Edit model card

wav2vec2-large-xls-r-300m-hi-cv8-b2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7322
  • Wer: 0.3469

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Hindi language isn't available in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 700
  • num_epochs: 35
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.6226 1.04 200 3.8855 1.0
3.4678 2.07 400 3.4283 1.0
2.3668 3.11 600 1.0743 0.7175
0.7308 4.15 800 0.7663 0.5498
0.4985 5.18 1000 0.6957 0.5001
0.3817 6.22 1200 0.6932 0.4866
0.3281 7.25 1400 0.7034 0.4983
0.2752 8.29 1600 0.6588 0.4606
0.2475 9.33 1800 0.6514 0.4328
0.219 10.36 2000 0.6396 0.4176
0.2036 11.4 2200 0.6867 0.4162
0.1793 12.44 2400 0.6943 0.4196
0.1724 13.47 2600 0.6862 0.4260
0.1554 14.51 2800 0.7615 0.4222
0.151 15.54 3000 0.7058 0.4110
0.1335 16.58 3200 0.7172 0.3986
0.1326 17.62 3400 0.7182 0.3923
0.1225 18.65 3600 0.6995 0.3910
0.1146 19.69 3800 0.7075 0.3875
0.108 20.73 4000 0.7297 0.3858
0.1048 21.76 4200 0.7413 0.3850
0.0979 22.8 4400 0.7452 0.3793
0.0946 23.83 4600 0.7436 0.3759
0.0897 24.87 4800 0.7289 0.3754
0.0854 25.91 5000 0.7271 0.3667
0.0803 26.94 5200 0.7378 0.3656
0.0752 27.98 5400 0.7488 0.3680
0.0718 29.02 5600 0.7185 0.3619
0.0702 30.05 5800 0.7428 0.3554
0.0653 31.09 6000 0.7447 0.3559
0.0638 32.12 6200 0.7327 0.3523
0.058 33.16 6400 0.7339 0.3488
0.0594 34.2 6600 0.7322 0.3469

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2

Evaluation results