metadata
language:
- mt
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- mt
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-maltese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: mt
wav2vec2-large-xls-r-300m-maltese
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set:
- Loss: 0.2994
- Wer: 0.2781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1800
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.0174 | 9.01 | 1000 | 3.0552 | 1.0 |
1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 |
0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 |
0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 |
0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 |
0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 |
0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 |
0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 |
0.451 | 81.08 | 9000 | 0.3146 | 0.2907 |
0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 |
0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Script
!python eval.py
--model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
--dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs