File size: 5,445 Bytes
1baf245
 
 
 
 
 
 
 
41b48c6
 
 
 
1baf245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b48c6
 
 
1baf245
 
 
 
 
 
 
079fc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1baf245
079fc18
 
 
 
 
 
 
 
 
 
1baf245
 
 
41b48c6
1baf245
 
 
41b48c6
1baf245
 
 
41b48c6
1baf245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b48c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- twitter_pos_vcb
metrics:
- accuracy
- poseval
- f1
- recall
- precision
model-index:
- name: bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: twitter_pos_vcb
      type: twitter_pos_vcb
      config: twitter-pos-vcb
      split: train
      args: twitter-pos-vcb
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9853480683735223
language:
- en
pipeline_tag: token-classification
---

# bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the twitter_pos_vcb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0502

| Token | Precision | Recall | F1-Score | Support |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| $ | 0.0 | 0.0 | 0.0 | 3
| '' | 0.9312320916905444 | 0.9530791788856305 | 0.9420289855072465 | 341 |
| ( | 0.9791666666666666 | 0.9591836734693877 | 0.9690721649484536 | 196 |
| ) | 0.960167714884696 | 0.9703389830508474 | 0.9652265542676501 | 472 |
| , | 0.9988979501873485 | 0.9993384785005512 | 0.9991181657848325 | 4535 |
| . | 0.9839189708141322 | 0.9894762249577601 | 0.9866897730281368 | 20715 |
| : | 0.9926405887528997 | 0.9971072719967858 | 0.9948689168604183 | 12445 |
| Cc | 0.9991067440821796 | 0.9986607142857142 | 0.9988836793927215 | 4480 |
| Cd | 0.9903884661593912 | 0.9899919935948759 | 0.9901901901901902 | 2498 |
| Dt | 0.9981148589510537 | 0.9976446837146703 | 0.9978797159492478 | 14860 |
| Ex | 0.9142857142857143 | 0.9846153846153847 | 0.9481481481481482 | 65 |
| Fw | 1.0 | 0.1 | 0.18181818181818182 | 10 |
| Ht | 0.999877541023757 | 0.9997551120362435 | 0.9998163227820978 | 8167 |
| In | 0.9960399353003514 | 0.9954846981437092 | 0.9957622393219583 | 17939 |
| Jj | 0.9812470698546648 | 0.9834756049808129 | 0.9823600735322877 | 12769 |
| Jjr | 0.9304511278195489 | 0.9686888454011742 | 0.9491850431447747 | 511 |
| Jjs | 0.9578414839797639 | 0.9726027397260274 | 0.9651656754460493 | 584 |
| Md | 0.9901398761751892 | 0.9908214777420835 | 0.990480559697213 | 4358 |
| Nn | 0.9810285563194078 | 0.9819697621331922 | 0.9814989335846437 | 30227 |
| Nnp | 0.9609722697706266 | 0.9467116357504216 | 0.9537886510363575 | 8895 |
| Nnps | 1.0 | 0.037037037037037035 | 0.07142857142857142 | 27 |
| Nns | 0.9697771061579146 | 0.9776564681985528 | 0.9737008471361739 | 7877 |
| Pos | 0.9977272727272727 | 0.984304932735426 | 0.9909706546275394 | 446 |
| Prp | 0.9983503349829983 | 0.9985184187487373 | 0.9984343697917544 | 29698 |
| Prp$ | 0.9974262182566919 | 0.9974262182566919 | 0.9974262182566919 | 5828 |
| Rb | 0.9939770374552983 | 0.9929802569727358 | 0.9934783971906942 | 15955 |
| Rbr | 0.9058823529411765 | 0.8191489361702128 | 0.8603351955307263 | 94 |
| Rbs | 0.92 | 1.0 | 0.9583333333333334 | 69 |
| Rp | 0.9802197802197802 | 0.9903774981495189 | 0.9852724594992636 | 1351 |
| Rt | 0.9995065383666419 | 0.9996298581122763 | 0.9995681944358769 | 8105 |
| Sym | 0.0 | 0.0 | 0.0 | 9 |
| To | 0.9984649496844619 | 0.9989761092150171 | 0.9987204640450398 | 5860 |
| Uh | 0.9614460148062687 | 0.9507510933637574 | 0.9560686457287633 | 10518 |
| Url | 1.0 | 0.9997242900468707 | 0.9998621260168207 | 3627 |
| Usr | 0.9999025388626285 | 1.0 | 0.9999512670565303 | 20519 |
| Vb | 0.9619302598929085 | 0.9570556133056133 | 0.9594867452615125 | 15392 |
| Vbd | 0.9592894152479645 | 0.9548719837907533 | 0.9570756023262255 | 5429 |
| Vbg | 0.9848831077518018 | 0.984191111891797 | 0.9845369882270251 | 5693 |
| Vbn | 0.9053408597481546 | 0.9164835164835164 | 0.910878112712975 | 2275 |
| Vbp | 0.963605718209626 | 0.9666228317364894 | 0.9651119169688633 | 15969 |
| Vbz | 0.9881780250347705 | 0.9861207494795281 | 0.9871483153872872 | 5764 |
| Wdt | 0.8666666666666667 | 0.9285714285714286 | 0.896551724137931 | 14 |
| Wp | 0.99125 | 0.993734335839599 | 0.9924906132665832 | 1596 |
| Wrb | 0.9963488843813387 | 0.9979683055668428 | 0.9971579374746244 | 2461 |
| `` | 0.9481865284974094 | 0.9786096256684492 | 0.963157894736842 | 187 |


Overall
- Accuracy: 0.9853
- Macro avg:
  - Precision: 0.9296417163691048
  - Recall: 0.8931046018294694
  - F1-score: 0.8930917459781836
  - Support: 308833
- Weighted avg:
  - Precision: 0.985306457604231
  - Recall: 0.9853480683735223
  - F1-Score: 0.9852689858931941
  - Support: 308833

## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/StrombergNLP-Twitter_pos_vcb/NER%20Project%20Using%20StrombergNLP%20Twitter_pos_vcb%20Dataset%20with%20PosEval.ipynb.

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/strombergnlp/twitter_pos_vcb

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3