|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd |
|
results: [] |
|
language: |
|
- en |
|
metrics: |
|
- seqeval |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1312 |
|
- Person |
|
- Precision: 0.8860048426150121 |
|
- Recall: 0.9401849948612538 |
|
- F1: 0.912291199202194 |
|
- Number: 29190 |
|
- Location |
|
- Precision: 0.8686381704207632 |
|
- Recall: 0.8152889539136796 |
|
- F1: 0.841118472477534 |
|
- Number: 95690 |
|
- Organization |
|
- Precision: 0.7919078915181266 |
|
- Recall': 0.7449641777764141 |
|
- F1: 0.7677190874452579 |
|
- Number': 65183 |
|
- Product |
|
- Precision: 0.7065968977761166 |
|
- Recall: 0.8295304958315051 |
|
- F1: 0.7631446160056513 |
|
- Number: 9116 |
|
- Art |
|
- Precision: 0.8407258064516129 |
|
- Recall: 0.8614333386302241 |
|
- F1: 0.8509536143159878 |
|
- Number: 6293 |
|
- Other |
|
- Precision: 0.7303024586555996 |
|
- Recall: 0.8314124132006586 |
|
- F1: 0.7775843599357258 |
|
- Nnumber: 13969 |
|
- Building |
|
- Precision: 0.5162234691388143 |
|
- Recall: 0.3648904983617865 |
|
- F1: 0.4275611234592847 |
|
- Number: 5799 |
|
- Event |
|
- Precision: 0.605920892987139 |
|
- Recall: 0.35144264602392683 |
|
- F1: 0.44486014608943525 |
|
- Number: 7105 |
|
- Overall |
|
- Precision: 0.8203 |
|
- Recall: 0.7886 |
|
- F1: 0.8041 |
|
- Accuracy: 0.9498 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/tree/main/Token%20Classification/Monolingual/DFKI%20SLT%20few%20NERd |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/DFKI-SLT/few-nerd |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Person Precision | Person Recall | Person F1 | Person Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Product Precision | Product Recall | Product F1 | Product Number | Art Precision | Art Recall | Art F1 | Art Number | Other Precision | Other Recall | Other F1 | Other Number | Building Precision | Building Recall | Building F1 | Building Number | Event Precision | Event Recall | Event F1 | Event Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:| |
|
| 0.1796 | 1.0 | 11293 | 0.1427 | 0.8741 | 0.9272 | 0.8999 | 29190 | 0.8576 | 0.8072 | 0.8316 | 95690 | 0.7699 | 0.7688 | 0.7694 | 65183 | 0.6711 | 0.75 | 0.7084 | 9116 | 0.8347 | 0.8154 | 0.8249 | 6293 | 0.6743 | 0.8195 | 0.7398 | 13969 | 0.4812 | 0.3951 | 0.4339 | 5799 | 0.5998 | 0.3253 | 0.4218 | 7105 | 0.8000 | 0.7852 | 0.7925 | 0.9483 | |
|
| 0.1542 | 2.0 | 22586 | 0.1312 | 0.8860 | 0.9402 | 0.9123 | 29190 | 0.8686 | 0.8153 | 0.8411 | 95690 | 0.7919 | 0.7450 | 0.7677 | 65183 | 0.7066 | 0.8295 | 0.7631 | 9116 | 0.8407 | 0.8614 | 0.8510 | 6293 | 0.7303 | 0.8314 | 0.7776 | 13969 | 0.5162 | 0.3649 | 0.4276 | 5799 | 0.6059 | 0.3514 | 0.4449 | 7105 | 0.8203 | 0.7886 | 0.8041 | 0.9498 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |