DunnBC22's picture
Update README.md
7330f4f
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
  - NLP Regression
  - Regression
  - Edmunds Car Reviews
model-index:
  - name: bert-base-uncased-Regression-Edmunds_Car_Reviews
    results: []
language:
  - en
metrics:
  - mse
  - mae

bert-base-uncased-Regression-Edmunds_Car_Reviews

This model is a fine-tuned version of bert-base-uncased.

It achieves the following results on the evaluation set:

  • Loss: 0.2324
  • Mse: 0.2324
  • Rmse: 0.4820
  • Mae: 0.3089

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/NLP%20Regression/Edmunds%20Car%20Reviews%20(BERT-Base)/Edmunds_Consumer_car_Regression_All_Manufacturers_Bert_Base.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/ankkur13/edmundsconsumer-car-ratings-and-reviews

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae
0.2142 1.0 11430 0.2421 0.2421 0.4920 0.3126
0.1931 2.0 22860 0.2530 0.2530 0.5030 0.3336
0.1192 3.0 34290 0.2324 0.2324 0.4820 0.3089

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3