File size: 6,171 Bytes
a6eb8b5 8686168 a6eb8b5 8686168 a6eb8b5 8686168 a6eb8b5 8686168 a6eb8b5 8686168 a6eb8b5 8686168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: dit-base-Business_Documents_Classified_v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: data
split: train
args: data
metrics:
- name: Accuracy
type: accuracy
value: 0.826
language:
- en
pipeline_tag: image-classification
---
# dit-base-Business_Documents_Classified_v2
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6715
- Accuracy: 0.826
- Weighted f1: 0.8272
- Micro f1: 0.826
- Macro f1: 0.8242
- Weighted recall: 0.826
- Micro recall: 0.826
- Macro recall: 0.8237
- Weighted precision: 0.8327
- Micro precision: 0.826
- Macro precision: 0.8293
## Model description
This is a classification model of 16 different types of documents.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Document%20AI/Multiclass%20Classification/Real%20World%20Documents%20Collections/Real%20World%20Documents%20Collections_v2.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/shaz13/real-world-documents-collections
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 2.7266 | 0.99 | 31 | 2.4738 | 0.208 | 0.1811 | 0.208 | 0.1827 | 0.208 | 0.208 | 0.2101 | 0.2143 | 0.208 | 0.2246 |
| 2.171 | 1.98 | 62 | 1.8510 | 0.423 | 0.3936 | 0.4230 | 0.3925 | 0.423 | 0.423 | 0.4243 | 0.4503 | 0.423 | 0.4446 |
| 1.6525 | 2.98 | 93 | 1.2633 | 0.61 | 0.5884 | 0.61 | 0.5855 | 0.61 | 0.61 | 0.6124 | 0.6377 | 0.61 | 0.6283 |
| 1.346 | 4.0 | 125 | 1.0259 | 0.706 | 0.7023 | 0.706 | 0.6992 | 0.706 | 0.706 | 0.7058 | 0.7095 | 0.706 | 0.7034 |
| 1.253 | 4.99 | 156 | 0.9180 | 0.729 | 0.7277 | 0.729 | 0.7239 | 0.729 | 0.729 | 0.7291 | 0.7340 | 0.729 | 0.7261 |
| 1.0975 | 5.98 | 187 | 0.8859 | 0.747 | 0.7480 | 0.747 | 0.7437 | 0.747 | 0.747 | 0.7472 | 0.7609 | 0.747 | 0.7526 |
| 1.1122 | 6.98 | 218 | 0.8270 | 0.76 | 0.7606 | 0.76 | 0.7578 | 0.76 | 0.76 | 0.7594 | 0.7772 | 0.76 | 0.7727 |
| 1.0365 | 8.0 | 250 | 0.7806 | 0.775 | 0.7759 | 0.775 | 0.7730 | 0.775 | 0.775 | 0.7735 | 0.7957 | 0.775 | 0.7920 |
| 1.004 | 8.99 | 281 | 0.7472 | 0.796 | 0.7977 | 0.796 | 0.7957 | 0.796 | 0.796 | 0.7956 | 0.8193 | 0.796 | 0.8151 |
| 0.9278 | 9.98 | 312 | 0.7296 | 0.795 | 0.7974 | 0.795 | 0.7957 | 0.795 | 0.795 | 0.7953 | 0.8157 | 0.795 | 0.8115 |
| 0.8767 | 10.98 | 343 | 0.7257 | 0.809 | 0.8101 | 0.809 | 0.8078 | 0.809 | 0.809 | 0.8091 | 0.8182 | 0.809 | 0.8136 |
| 0.8656 | 12.0 | 375 | 0.6875 | 0.814 | 0.8137 | 0.8140 | 0.8106 | 0.814 | 0.814 | 0.8122 | 0.8207 | 0.814 | 0.8164 |
| 0.7905 | 12.99 | 406 | 0.7060 | 0.808 | 0.8093 | 0.808 | 0.8071 | 0.808 | 0.808 | 0.8068 | 0.8182 | 0.808 | 0.8145 |
| 0.8804 | 13.98 | 437 | 0.6849 | 0.82 | 0.8214 | 0.82 | 0.8183 | 0.82 | 0.82 | 0.8183 | 0.8260 | 0.82 | 0.8215 |
| 0.8265 | 14.98 | 468 | 0.6821 | 0.816 | 0.8171 | 0.816 | 0.8143 | 0.816 | 0.816 | 0.8142 | 0.8242 | 0.816 | 0.8206 |
| 0.7929 | 16.0 | 500 | 0.6877 | 0.818 | 0.8184 | 0.818 | 0.8152 | 0.818 | 0.818 | 0.8167 | 0.8240 | 0.818 | 0.8186 |
| 0.7993 | 16.99 | 531 | 0.6718 | 0.825 | 0.8259 | 0.825 | 0.8234 | 0.825 | 0.825 | 0.8227 | 0.8306 | 0.825 | 0.8282 |
| 0.7954 | 17.86 | 558 | 0.6715 | 0.826 | 0.8272 | 0.826 | 0.8242 | 0.826 | 0.826 | 0.8237 | 0.8327 | 0.826 | 0.8293 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3 |