librarian-bot's picture
Librarian Bot: Add base_model information to model
2ae0d3b
|
raw
history blame
3 kB
metadata
language:
  - en
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
base_model: microsoft/dit-base
model-index:
  - name: dit-base-Document_Classification-RVL_CDIP
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: data
          split: train
          args: data
        metrics:
          - type: accuracy
            value: 0.976678084687705
            name: Accuracy

dit-base-Document_Classification-RVL_CDIP

This model is a fine-tuned version of microsoft/dit-base.

It achieves the following results on the evaluation set:

  • Loss: 0.0786
  • Accuracy: 0.9767
  • F1
    • Weighted: 0.9768
    • Micro: 0.9767
    • Macro: 0.9154
  • Recall
    • Weighted: 0.9767
    • Micro: 0.9767
    • Macro: 0.9019
  • Precision
    • Weighted: 0.9771
    • Micro: 0.9767
    • Macro: 0.9314

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Document%20AI/Multiclass%20Classification/Document%20Classification%20-%20RVL-CDIP/Document%20Classification%20-%20RVL-CDIP.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/achrafbribiche/document-classification

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted F1 Micro F1 Macro F1 Weighted Recall Micro Recall Macro Recall Weighted Precision Micro Precision Macro Precision
0.1535 1.0 208 0.1126 0.9622 0.9597 0.9622 0.5711 0.9622 0.9622 0.5925 0.9577 0.9622 0.5531
0.1195 2.0 416 0.0843 0.9738 0.9736 0.9738 0.8502 0.9738 0.9738 0.8037 0.9741 0.9738 0.9287
0.0979 3.0 624 0.0786 0.9767 0.9768 0.9767 0.9154 0.9767 0.9767 0.9019 0.9771 0.9767 0.9314

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3