|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: led-base-16384-text_summarization_data |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: summarization |
|
--- |
|
|
|
# led-base-16384-text_summarization_data |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9531 |
|
- Rouge1: 43.3689 |
|
- Rouge2: 19.9885 |
|
- Rougel: 39.9887 |
|
- Rougelsum: 40.0679 |
|
- Gen Len: 14.0392 |
|
|
|
## Model description |
|
|
|
This is a text summarization model. |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Text%20Summarization/Text-Summarized%20Data%20-%20Comparison/LED%20-%20Text%20Summarization%20-%204%20Epochs.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/cuitengfeui/textsummarization-data |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.329 | 1.0 | 1197 | 0.9704 | 42.4111 | 19.8995 | 39.4717 | 39.5449 | 14.254 | |
|
| 0.8367 | 2.0 | 2394 | 0.9425 | 43.1141 | 19.6089 | 39.7533 | 39.8298 | 14.1058 | |
|
| 0.735 | 3.0 | 3591 | 0.9421 | 42.8101 | 19.8281 | 39.617 | 39.6751 | 13.7101 | |
|
| 0.6737 | 4.0 | 4788 | 0.9531 | 43.3689 | 19.9885 | 39.9887 | 40.0679 | 14.0392 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.12.1 |