DunnBC22's picture
update model card README.md
16e1c56
|
raw
history blame
2.26 kB
metadata
license: mit
tags:
  - translation
  - generated_from_trainer
metrics:
  - bleu
  - rouge
model-index:
  - name: mbart-large-50-English_Spanish_Translation
    results: []

mbart-large-50-English_Spanish_Translation

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0290
  • Bleu: 41.4437
  • Rouge: {'rouge1': 0.6751402780531002, 'rouge2': 0.49769602014143044, 'rougeL': 0.6371513427059108, 'rougeLsum': 0.6376403149816605}
  • Meteor: {'meteor': 0.6479226630466496}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge Meteor
1.5608 1.0 900 1.0899 39.9184 {'rouge1': 0.6645461901016299, 'rouge2': 0.48457734138815345, 'rougeL': 0.6254335531454508, 'rougeLsum': 0.6258737583448748} {'meteor': 0.6376166612731494}
0.9734 2.0 1800 1.0290 41.4436 {'rouge1': 0.6751348620702116, 'rouge2': 0.4976855704059807, 'rougeL': 0.6371345376462452, 'rougeLsum': 0.6376186633843448} {'meteor': 0.6479188510808377}

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1
  • Datasets 2.5.2
  • Tokenizers 0.12.1