metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: van-base-Brain_Tumors_Image_Classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7918781725888325
language:
- en
pipeline_tag: image-classification
van-base-Brain_Tumors_Image_Classification
This model is a fine-tuned version of Visual-Attention-Network/van-base.
It achieves the following results on the evaluation set:
- Loss: 1.7847
- Accuracy: 0.7919
- Weighted f1: 0.7588
- Micro f1: 0.7919
- Macro f1: 0.7665
- Weighted recall: 0.7919
- Micro recall: 0.7919
- Macro recall: 0.7865
- Weighted precision: 0.8505
- Micro precision: 0.7919
- Macro precision: 0.8675
Model Description
Click here for the code that I used to create this model.This project is part of a comparison of seventeen (17) transformers.
Click here to see the README markdown file for the full project.Intended Uses & Limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.Training & Evaluation Data
Brain Tumor Image Classification DatasetSample Images
Class Distribution of Training Dataset
Class Distribution of Evaluation Dataset
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3357 | 1.0 | 180 | 1.5273 | 0.7183 | 0.6631 | 0.7183 | 0.6695 | 0.7183 | 0.7183 | 0.7058 | 0.8219 | 0.7183 | 0.8420 |
1.3357 | 2.0 | 360 | 1.9359 | 0.7792 | 0.7314 | 0.7792 | 0.7411 | 0.7792 | 0.7792 | 0.7764 | 0.8467 | 0.7792 | 0.8636 |
0.1229 | 3.0 | 540 | 1.7847 | 0.7919 | 0.7588 | 0.7919 | 0.7665 | 0.7919 | 0.7919 | 0.7865 | 0.8505 | 0.7919 | 0.8675 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3