Edit model card

vit-base-patch16-224-in21k_Human_Activity_Recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k.

It achieves the following results on the evaluation set:

  • Loss: 0.7403
  • Accuracy: 0.8381
  • F1
    • Weighted: 0.8388
    • Micro: 0.8381
    • Macro: 0.8394
  • Recall
    • Weighted: 0.8381
    • Micro: 0.8381
    • Macro: 0.8390
  • Precision
    • Weighted: 0.8421
    • Micro: 0.8381
    • Macro: 0.8424

Model description

This is a multiclass image classification model of humans doing different activities.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Human%20Activity%20Recognition/ViT-Human%20Action_Recogniton.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to test and experiment with this model, but it is at your own risk/peril.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/meetnagadia/human-action-recognition-har-dataset

Sample Images From Dataset:

Sample Images

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted F1 Micro F1 Macro F1 Weighted Recall Micro Recall Macro Recall Weighted Precision Micro Precision Macro Precision
1.0814 1.0 630 0.7368 0.7794 0.7795 0.7794 0.7798 0.7794 0.7794 0.7797 0.7896 0.7794 0.7896
0.5149 2.0 1260 0.6439 0.8060 0.8049 0.8060 0.8036 0.8060 0.8060 0.8051 0.8136 0.8060 0.8130
0.3023 3.0 1890 0.7026 0.8254 0.8272 0.8254 0.8278 0.8254 0.8254 0.8256 0.8335 0.8254 0.8345
0.0507 4.0 2520 0.7414 0.8317 0.8342 0.8317 0.8348 0.8317 0.8317 0.8321 0.8427 0.8317 0.8438
0.0128 5.0 3150 0.7403 0.8381 0.8388 0.8381 0.8394 0.8381 0.8381 0.8390 0.8421 0.8381 0.8424

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
67
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition 4

Evaluation results