File size: 2,208 Bytes
0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 0a2939a b0ff0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: hustvl/yolos-small
tags:
- generated_from_trainer
- medical
model-index:
- name: yolos-small-Axial_MRIs
results: []
datasets:
- Francesco/axial-mri
language:
- en
pipeline_tag: object-detection
---
# yolos-small-Axial_MRIs
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Axial%20MRIs/Axial_MRIs_Object_Detection_YOLOS.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/Francesco/axial-mri
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Metric Name | IoU | Area| maxDets | Metric Value |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.284 |
| Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.451 |
| Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.351 |
| Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.000 |
| Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.182 |
| Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.663 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=1 | 0.388 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=10 | 0.524 |
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.566 |
| Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.000 |
| Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.502 |
| Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.791 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3 |