XuanYuan-6B-Chat / README.md
homeyang's picture
Update README.md
8d7ac23 verified
metadata
license: llama2

介绍

XuanYuan-6B系列模型是采用类LLaMA架构,从零开始进行预训练的金融大模型。我们构建了大规模、多样化、高质量的训练语料对模型进行了充分预训练,使模型具备各项能力。此外我们构建了丰富、高质量的问答数据和人类偏好数据,并通过指令微调和强化学习进一步对齐模型表现和人类偏好,显著提升了模型在对话场景中的表现。各项评估显示,XuanYuan-6B不仅具备较强的通用能力,更具备强大的金融能力。更多细节请参考我们的技术报告:Report

XuanYuan-6B系列模型包含基座模型XuanYuan-6B,经指令微调和强化对齐的chat模型XuanYuan-6B-Chat,以及chat模型的量化版本XuanYuan-6B-Chat-4bit和XuanYuan-6B-Chat-8bit。各个模型的链接为:

基座模型 Chat模型 8-bit量化Chat模型 4-bit量化Chat模型
🤗 XuanYuan-6B 🤗 XuanYuan-6B-Chat 🤗 XuanYuan-6B-Chat-8bit 🤗 XuanYuan-6B-Chat-4bit

主要特点:

  • 收集多个领域大量的训练预料,进行了多维度数据清洗和去重,保证数据的量级和质量
  • 从零开始预训练,预训练中动态调整数据配比,模型基座能力较强
  • 结合Self-QA方法构建高质量问答数据,采用混合训练方式进行监督微调
  • 构建高质量人类偏好数据训练奖励模型并进行强化训练,对齐模型表现和人类偏好
  • 模型尺寸小并包含量化版本,硬件要求低,适用性更强
  • 在多个榜单和人工评估中均展现出良好的性能,具备领先的金融能力

模型细节

XuanYuan-6B具有4096个隐藏单元,由30层和32个注意⼒头组成。为了融⼊位置信息,我们采⽤了RoPE作为位置嵌⼊技术。模型中使⽤的激活函数是SwiGLU,并使⽤RMSNorm进⾏归⼀化处理。在训练过程中,我们将最⼤序列⻓度设置为2048个token。词表的⼤⼩为39438,与我们先前模型(XuanYuan-13B、XuanYuan-70B)使⽤的词表⼀致。

训练细节

训练前,我们从不同领域收集了大量训练语料,并对数据进行一系列处理来提升质量。

预训练中,我们不断评估模型在特定任务或基准上的性能,并根据评估结果动态调整不同来源的训练数据配⽐,不断优化模型训练过程,提升模型各项能力。

我们利用Self-QA的方法构建了高质量指令微调数据集,并结合无监督语言模型任务对预训练后的模型进行了混合微调。在增强模型chat场景下各项能力的同时,保证其泛化性。

最后,我们通过人工标注的方式构建了高质量的偏好数据,由此训练奖励模型并进行强化对齐训练,使其表现对齐人类偏好,以继续提升模型各项能力。

使用方法

XuanYuan-6B基座模型、chat模型及其量化模型的使用方法和XuanYuan-70BXuanYuan2-70B类似,但是tokenizer加载方式和在对话场景中使用的prompt格式不同(不包含system message)。下面以XuanYuan-6B-Chat模型为例,来展示XuanYuan-6B系列模型的使用方法。

import torch
from transformers import LlamaForCausalLM, AutoTokenizer

model_name_or_path = "your/model/path/"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = LlamaForCausalLM.from_pretrained(model_name_or_path, device_map="auto")
model.eval()

seps = [" ", "</s>"]
roles = ["Human", "Assistant"]

content = "介绍下你自己"
prompt = seps[0] + roles[0] + ": " + content + seps[0] + roles[1] + ":"
print(f"输入: {content}")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
outputs = tokenizer.decode(outputs.cpu()[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"输出: {outputs}")