File size: 2,043 Bytes
ed1aa06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- source_data
metrics:
- precision
- recall
- f1
model-index:
- name: SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: source_data
type: source_data
args: ROLES_MULTI
metrics:
- name: Precision
type: precision
value: 0.9572859572859573
- name: Recall
type: recall
value: 0.9649457039436083
- name: F1
type: f1
value: 0.9611005692599621
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0100
- Accuracy Score: 0.9975
- Precision: 0.9573
- Recall: 0.9649
- F1: 0.9611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
| 0.0068 | 1.0 | 863 | 0.0100 | 0.9975 | 0.9573 | 0.9649 | 0.9611 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0a0+bfe5ad2
- Datasets 2.10.1
- Tokenizers 0.12.1
|