Text Generation
Transformers
Safetensors
Korean
llama
conversational
text-generation-inference
Inference Endpoints
JeongwonChoi's picture
Update README.md
da0c41c verified
|
raw
history blame
3.77 kB
metadata
tags:
  - text-generation
license: cc-by-nc-sa-4.0
language:
  - ko
base_model: LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
datasets:
  - mncai/orca_dpo_pairs_ko
  - Ja-ck/Orca-DPO-Pairs-KO
  - We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs

DataVortexS-10.7B-dpo-v0.1

DataVortex

Model Details

Base Model

LDCC/LDCC-SOLAR-10.7B

Trained On

  • OS: Ubuntu 20.04
  • GPU: H100 80GB 2ea
  • transformers: v4.36.2

Dataset

Instruction format

It follows Alpaca format.

E.g.

text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### User:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Assistant:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### User:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.334282 0.891367 0.896755 0.884441
kobest_copa 0.697763 0.716762 0.724769 0.751746
kobest_hellaswag 0.432047 0.458301 0.443993 0.458232
kobest_sentineg 0.49353 0.954657 0.964735 0.949606
Average 0.4894055 0.75527175 0.757563 0.76100625

Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
53.21 47.87 57.18 54.82 53.64 52.54

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.