metadata
tags:
- text-generation
license: cc-by-nc-sa-4.0
language:
- ko
base_model: LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
datasets:
- mncai/orca_dpo_pairs_ko
- Ja-ck/Orca-DPO-Pairs-KO
- We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs
DataVortexS-10.7B-dpo-v0.1
Model Details
Base Model
Trained On
- OS: Ubuntu 20.04
- GPU: H100 80GB 2ea
- transformers: v4.36.2
Dataset
Instruction format
It follows Alpaca format.
E.g.
text = """\
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### User:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Assistant:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### User:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
Model Benchmark
Ko LM Eval Harness
Task | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
kobest_boolq | 0.334282 | 0.891367 | 0.896755 | 0.884441 |
kobest_copa | 0.697763 | 0.716762 | 0.724769 | 0.751746 |
kobest_hellaswag | 0.432047 | 0.458301 | 0.443993 | 0.458232 |
kobest_sentineg | 0.49353 | 0.954657 | 0.964735 | 0.949606 |
Average | 0.4894055 | 0.75527175 | 0.757563 | 0.76100625 |
Ko-LLM-Leaderboard
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
53.21 | 47.87 | 57.18 | 54.82 | 53.64 | 52.54 |
Implementation Code
This model contains the chat_template instruction format.
You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
License
The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.