Edit model card

DataVortexS-10.7B-v0.1

DataVortex

Our Team

Research & Engineering Product Management
Kwangseok Yang Seunghyun Choi
Jeongwon Choi Hyoseok Choi

Model Details

Base Model

hyeogi/SOLAR-10.7B-dpo-v0.1

Trained On

  • OS: Ubuntu 20.04
  • GPU: H100 80GB 1ea
  • transformers: v4.36.2

Dataset

Instruction format

It follows Alpaca format.

E.g.

text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### Instruction:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Response:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### Instruction:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.334282 0.642861 0.691496 0.638754
kobest_copa 0.584962 0.564325 0.570654 0.581035
kobest_hellaswag 0.340022 0.339401 0.341917 0.337713
kobest_sentineg 0.328257 0.414905 0.464711 0.888914
Average 0.39688075 0.490373 0.5171945 0.611604

Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
35.39 28.48 39.79 35.98 44.72 27.63

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

Downloads last month
3,245
Safetensors
Model size
10.9B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Edentns/DataVortexS-10.7B-v0.1

Finetuned
(3)
this model

Dataset used to train Edentns/DataVortexS-10.7B-v0.1

Collection including Edentns/DataVortexS-10.7B-v0.1