This model is a merged model of meta Llama2 and EdwardYu/llama-2-7b-MedQuAD.
Usage
model_name = "EdwardYu/llama-2-7b-MedQuAD-merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
)
question = 'What are the side effects or risks of Glucagon?'
inputs = tokenizer(question, return_tensors="pt").to("cuda")
outputs = model.generate(inputs=inputs.input_ids, max_length=1024)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
To run model inference faster, you can load in 16-bits without 4-bit quantization.
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model = PeftModel.from_pretrained(model, adapter)
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.