model documentation

#1
by nazneen - opened
Files changed (1) hide show
  1. README.md +169 -6
README.md CHANGED
@@ -1,11 +1,171 @@
1
- \n## BLEURT
 
 
 
 
2
 
3
- Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
4
- Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
7
 
8
- ## Usage Example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  ```python
11
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
@@ -22,4 +182,7 @@ with torch.no_grad():
22
  scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
23
 
24
  print(scores) # tensor([-0.9414, -0.5678])
25
- ```
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-classification
4
+ - bert
5
+ ---
6
 
7
+ # Model Card for bleurt-tiny-512
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+ Pytorch version of the original BLEURT models from ACL paper
14
+
15
+ - **Developed by:** Elron Bandel, Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research
16
+ - **Shared by [Optional]:** Elron Bandel
17
+ - **Model type:** Text Classification
18
+ - **Language(s) (NLP):** More information needed
19
+ - **License:** More information needed
20
+ - **Parent Model:** BERT
21
+ - **Resources for more information:**
22
+ - [GitHub Repo](https://github.com/google-research/bleurt/tree/master)
23
+ - [Associated Paper](https://aclanthology.org/2020.acl-main.704/)
24
+ - [Blog Post](https://ai.googleblog.com/2020/05/evaluating-natural-language-generation.html)
25
+
26
 
 
27
 
28
+ # Uses
29
+
30
+
31
+ ## Direct Use
32
+ This model can be used for the task of Text Classification
33
+
34
+ ## Downstream Use [Optional]
35
+
36
+ More information needed.
37
+
38
+ ## Out-of-Scope Use
39
+
40
+ The model should not be used to intentionally create hostile or alienating environments for people.
41
+
42
+ # Bias, Risks, and Limitations
43
+
44
+
45
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
46
+
47
+
48
+
49
+ ## Recommendations
50
+
51
+
52
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
53
+
54
+ # Training Details
55
+
56
+ ## Training Data
57
+ The model authors note in the [associated paper](https://aclanthology.org/2020.acl-main.704.pdf):
58
+ > We use years 2017 to 2019 of the WMT Metrics Shared Task, to-English language pairs. For each year, we used the of- ficial WMT test set, which include several thou- sand pairs of sentences with human ratings from the news domain. The training sets contain 5,360, 9,492, and 147,691 records for each year.
59
+
60
+
61
+ ## Training Procedure
62
+
63
+
64
+ ### Preprocessing
65
+
66
+ More information needed
67
+
68
+ ### Speeds, Sizes, Times
69
+ More information needed
70
+
71
+
72
+ # Evaluation
73
+
74
+
75
+ ## Testing Data, Factors & Metrics
76
+
77
+ ### Testing Data
78
+
79
+ The test sets for years 2018 and 2019 [of the WMT Metrics Shared Task, to-English language pairs.] are noisier,
80
+
81
+
82
+
83
+ ### Factors
84
+ More information needed
85
+
86
+ ### Metrics
87
+
88
+ More information needed
89
+
90
+
91
+ ## Results
92
+
93
+ More information needed
94
+
95
+
96
+ # Model Examination
97
+
98
+ More information needed
99
+
100
+ # Environmental Impact
101
+
102
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
103
+
104
+ - **Hardware Type:** More information needed
105
+ - **Hours used:** More information needed
106
+ - **Cloud Provider:** More information needed
107
+ - **Compute Region:** More information needed
108
+ - **Carbon Emitted:** More information needed
109
+
110
+ # Technical Specifications [optional]
111
+
112
+ ## Model Architecture and Objective
113
+
114
+ More information needed
115
+
116
+ ## Compute Infrastructure
117
+
118
+ More information needed
119
+
120
+ ### Hardware
121
+
122
+
123
+ More information needed
124
+
125
+ ### Software
126
+
127
+ More information needed.
128
+
129
+ # Citation
130
+
131
+
132
+ **BibTeX:**
133
+
134
+
135
+ ```bibtex
136
+ @inproceedings{sellam2020bleurt,
137
+ title = {BLEURT: Learning Robust Metrics for Text Generation},
138
+ author = {Thibault Sellam and Dipanjan Das and Ankur P Parikh},
139
+ year = {2020},
140
+ booktitle = {Proceedings of ACL}
141
+ }
142
+ ```
143
+
144
+
145
+
146
+
147
+ # Glossary [optional]
148
+ More information needed
149
+
150
+ # More Information [optional]
151
+ More information needed
152
+
153
+
154
+ # Model Card Authors [optional]
155
+
156
+ Elron Bandel in collaboration with Ezi Ozoani and the Hugging Face team
157
+
158
+
159
+ # Model Card Contact
160
+
161
+ More information needed
162
+
163
+ # How to Get Started with the Model
164
+
165
+ Use the code below to get started with the model.
166
+
167
+ <details>
168
+ <summary> Click to expand </summary>
169
 
170
  ```python
171
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
182
  scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
183
 
184
  print(scores) # tensor([-0.9414, -0.5678])
185
+ ```
186
+
187
+ See [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) for model conversion code.
188
+ </details>