Files changed (1) hide show
  1. README.md +119 -11
README.md CHANGED
@@ -1,14 +1,4 @@
1
  ---
2
- license: apache-2.0
3
- datasets:
4
- - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
5
- - anthracite-org/stheno-filtered-v1.1
6
- - PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
7
- - Gryphe/Sonnet3.5-Charcard-Roleplay
8
- - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
9
- - anthracite-org/kalo-opus-instruct-22k-no-refusal
10
- - anthracite-org/nopm_claude_writing_fixed
11
- - anthracite-org/kalo_opus_misc_240827
12
  language:
13
  - en
14
  - fr
@@ -19,7 +9,112 @@ language:
19
  - ru
20
  - zh
21
  - ja
 
 
 
 
 
 
 
 
 
 
22
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ---
24
 
25
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/NGEOrcWYPDnFmvHinkXVk.png)
@@ -52,4 +147,17 @@ The v0.2 models are trained on ChatML, please use that Context and Instruct temp
52
  ## Training
53
  Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.
54
 
55
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  language:
3
  - en
4
  - fr
 
9
  - ru
10
  - zh
11
  - ja
12
+ license: apache-2.0
13
+ datasets:
14
+ - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
15
+ - anthracite-org/stheno-filtered-v1.1
16
+ - PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
17
+ - Gryphe/Sonnet3.5-Charcard-Roleplay
18
+ - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
19
+ - anthracite-org/kalo-opus-instruct-22k-no-refusal
20
+ - anthracite-org/nopm_claude_writing_fixed
21
+ - anthracite-org/kalo_opus_misc_240827
22
  pipeline_tag: text-generation
23
+ model-index:
24
+ - name: Azure_Dusk-v0.2
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ name: Text Generation
29
+ dataset:
30
+ name: IFEval (0-Shot)
31
+ type: HuggingFaceH4/ifeval
32
+ args:
33
+ num_few_shot: 0
34
+ metrics:
35
+ - type: inst_level_strict_acc and prompt_level_strict_acc
36
+ value: 34.67
37
+ name: strict accuracy
38
+ source:
39
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
40
+ name: Open LLM Leaderboard
41
+ - task:
42
+ type: text-generation
43
+ name: Text Generation
44
+ dataset:
45
+ name: BBH (3-Shot)
46
+ type: BBH
47
+ args:
48
+ num_few_shot: 3
49
+ metrics:
50
+ - type: acc_norm
51
+ value: 17.4
52
+ name: normalized accuracy
53
+ source:
54
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
55
+ name: Open LLM Leaderboard
56
+ - task:
57
+ type: text-generation
58
+ name: Text Generation
59
+ dataset:
60
+ name: MATH Lvl 5 (4-Shot)
61
+ type: hendrycks/competition_math
62
+ args:
63
+ num_few_shot: 4
64
+ metrics:
65
+ - type: exact_match
66
+ value: 1.66
67
+ name: exact match
68
+ source:
69
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
70
+ name: Open LLM Leaderboard
71
+ - task:
72
+ type: text-generation
73
+ name: Text Generation
74
+ dataset:
75
+ name: GPQA (0-shot)
76
+ type: Idavidrein/gpqa
77
+ args:
78
+ num_few_shot: 0
79
+ metrics:
80
+ - type: acc_norm
81
+ value: 1.45
82
+ name: acc_norm
83
+ source:
84
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
85
+ name: Open LLM Leaderboard
86
+ - task:
87
+ type: text-generation
88
+ name: Text Generation
89
+ dataset:
90
+ name: MuSR (0-shot)
91
+ type: TAUR-Lab/MuSR
92
+ args:
93
+ num_few_shot: 0
94
+ metrics:
95
+ - type: acc_norm
96
+ value: 6.37
97
+ name: acc_norm
98
+ source:
99
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
100
+ name: Open LLM Leaderboard
101
+ - task:
102
+ type: text-generation
103
+ name: Text Generation
104
+ dataset:
105
+ name: MMLU-PRO (5-shot)
106
+ type: TIGER-Lab/MMLU-Pro
107
+ config: main
108
+ split: test
109
+ args:
110
+ num_few_shot: 5
111
+ metrics:
112
+ - type: acc
113
+ value: 22.6
114
+ name: accuracy
115
+ source:
116
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2
117
+ name: Open LLM Leaderboard
118
  ---
119
 
120
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/NGEOrcWYPDnFmvHinkXVk.png)
 
147
  ## Training
148
  Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.
149
 
150
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
151
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
152
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Epiculous__Azure_Dusk-v0.2)
153
+
154
+ | Metric |Value|
155
+ |-------------------|----:|
156
+ |Avg. |14.03|
157
+ |IFEval (0-Shot) |34.67|
158
+ |BBH (3-Shot) |17.40|
159
+ |MATH Lvl 5 (4-Shot)| 1.66|
160
+ |GPQA (0-shot) | 1.45|
161
+ |MuSR (0-shot) | 6.37|
162
+ |MMLU-PRO (5-shot) |22.60|
163
+