Edit model card

Athena-codegemma-2-2b-lt for coding

Supervised fine tuned (sft unsloth) for coding with EpistemeAI coding dataset.

Original Model card

Model Information

Summary description and brief definition of inputs and outputs.

Description

Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Usage

Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:

pip install -U transformers

Then, copy the snippet from the section that is relevant for your usecase.

Running with the pipeline API

import torch
from transformers import pipeline
pipe = pipeline(
    "text-generation",
    model="EpistemeAI/Athena-codegemma-2-2b-it",
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",  # replace with "mps" to run on a Mac device
)
messages = [
    {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
]
outputs = pipe(messages, max_new_tokens=256)
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
print(assistant_response)
# Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world.  So, what be yer pleasure, eh? 🦜

Running the model on a single / multi GPU

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
model = AutoModelForCausalLM.from_pretrained(
    "EpistemeAI/Athena-codegemma-2-2b-it",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))

You can ensure the correct chat template is applied by using tokenizer.apply_chat_template as follows:

messages = [
    {"role": "user", "content": "Write me a poem about Machine Learning."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU using different precisions

The native weights of this model were exported in bfloat16 precision.

You can also use float32 if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to float32). See examples below.

  • Upcasting to torch.float32
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
model = AutoModelForCausalLM.from_pretrained(
    "EpistemeAI/Athena-codegemma-2-2b-it",
    device_map="auto",
)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))

Running the model through a CLI

The local-gemma repository contains a lightweight wrapper around Transformers for running Gemma 2 through a command line interface, or CLI. Follow the installation instructions for getting started, then launch the CLI through the following command:

local-gemma --model 2b --preset speed

Quantized Versions through bitsandbytes

Using 8-bit precision (int8) ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "EpistemeAI/Athena-codegemma-2-2b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ```
Using 4-bit precision ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "EpistemeAI/Athena-codegemma-2-2b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ```

Advanced Usage

Torch compile [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.

Note that two warm-up steps are required before the full inference speed is realised:

import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import AutoTokenizer, Gemma2ForCausalLM
from transformers.cache_utils import HybridCache
import torch
torch.set_float32_matmul_precision("high")
# load the model + tokenizer
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
model = Gemma2ForCausalLM.from_pretrained("EpistemeAI/Athena-codegemma-2-2b-it", torch_dtype=torch.bfloat16)
model.to("cuda")
# apply the torch compile transformation
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
# pre-process inputs
input_text = "The theory of special relativity states "
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
prompt_length = model_inputs.input_ids.shape[1]
# set-up k/v cache
past_key_values = HybridCache(
    config=model.config,
    max_batch_size=1,
    max_cache_len=model.config.max_position_embeddings,
    device=model.device,
    dtype=model.dtype
)
# enable passing kv cache to generate
model._supports_cache_class = True
model.generation_config.cache_implementation = None
# two warm-up steps
for idx in range(2):
    outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
    past_key_values.reset()
# fast run
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

For more details, refer to the Transformers documentation.

Chat Template

The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.

Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "google/gemma-2-2b-it"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cuda",
    torch_dtype=dtype,)
chat = [
    { "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

At this point, the prompt contains the following text:

<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model

As you can see, each turn is preceded by a <start_of_turn> delimiter and then the role of the entity (either user, for content supplied by the user, or model for LLM responses). Turns finish with the <end_of_turn> token.

You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template.

After the prompt is ready, generation can be performed like this:

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
print(tokenizer.decode(outputs[0]))

Inputs and outputs

  • Input: Text string, such as a question, a prompt, or a document to be summarized.
  • Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of a document.

Citation

@article{gemma_2024,
    title={Gemma},
    url={https://www.kaggle.com/m/3301},
    DOI={10.34740/KAGGLE/M/3301},
    publisher={Kaggle},
    author={Gemma Team},
    year={2024}
}

Uploaded model

  • Developed by: EpistemeAI
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-2-2b-it-bnb-4bit

This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
40
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for EpistemeAI/Athena-codegemma-2-2b-it

Finetuned
(86)
this model
Quantizations
2 models