|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- hate_speech18 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned_on_hata_dateset |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: hate_speech18 |
|
type: hate_speech18 |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9178338001867413 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9154943774479662 |
|
- name: Recall |
|
type: recall |
|
value: 0.9178338001867413 |
|
- name: Precision |
|
type: precision |
|
value: 0.9137800286953446 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned_on_hata_dateset |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the hate_speech18 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0451 |
|
- Accuracy: 0.9178 |
|
- F1: 0.9155 |
|
- Recall: 0.9178 |
|
- Precision: 0.9138 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.3342 | 1.0 | 268 | 0.3774 | 0.8497 | 0.8702 | 0.8497 | 0.9131 | |
|
| 0.2411 | 2.0 | 536 | 0.4330 | 0.9020 | 0.9097 | 0.9020 | 0.9237 | |
|
| 0.1374 | 3.0 | 804 | 0.5690 | 0.8964 | 0.9050 | 0.8964 | 0.9206 | |
|
| 0.0804 | 4.0 | 1072 | 1.0798 | 0.9188 | 0.9140 | 0.9188 | 0.9117 | |
|
| 0.0428 | 5.0 | 1340 | 1.0451 | 0.9178 | 0.9155 | 0.9178 | 0.9138 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|