model_finetuned / README.md
EugeneHF's picture
HuBERT_fine_golos
5005ba6 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: model_finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: ru
          split: test
          args: ru
        metrics:
          - name: Wer
            type: wer
            value: 0.5240747438215793

model_finetuned

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4337
  • Wer: 0.5241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.1665 1.9139 400 1.3007 0.9612
0.9389 3.8278 800 0.6428 0.7616
0.5785 5.7416 1200 0.5126 0.6447
0.4408 7.6555 1600 0.4807 0.5937
0.3589 9.5694 2000 0.4581 0.5665
0.3033 11.4833 2400 0.4461 0.5416
0.2678 13.3971 2800 0.4337 0.5241

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1