EvanD's picture
Update README.md
0dd3cc5
metadata
pipeline_tag: token-classification
tags:
  - named-entity-recognition
  - sequence-tagger-model
widget:
  - text: Mit navn er Amadeus Wolfgang, og jeg bor i Berlin
inference:
  parameters:
    aggregation_strategy: simple
    grouped_entities: true
language:
  - da

xlm-roberta model trained on DaNe, performing 97.1 f1-Macro on test set.

Test metric Results
test_f1_mac_dane_ner 0.9713183641433716
test_loss_dane_ner 0.11384682357311249
test_prec_mac_dane_ner 0.8712055087089539
test_rec_mac_dane_ner 0.8684446811676025
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner")

nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "Mit navn er Amadeus Wolfgang, og jeg bor i Berlin"

ner_results = nlp(example)
print(ner_results)