xlm-roberta model trained on hungarian ner dataset from flair
Test metric | Results |
---|---|
test_f1_mac_hu_ner | 0.9962009787559509 |
test_loss_hu_ner | 0.019755737856030464 |
test_prec_mac_hu_ner | 0.9692726135253906 |
test_rec_mac_hu_ner | 0.9708725810050964 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner")
nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "A nevem Amadeus Wolfgang és Berlinben élek"
ner_results = nlp(example)
print(ner_results)
- Downloads last month
- 112
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.