EzraWilliam's picture
End of training
e952316 verified
|
raw
history blame
7.8 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - xtreme_s
metrics:
  - wer
model-index:
  - name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod10
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: xtreme_s
          type: xtreme_s
          config: fleurs.id_id
          split: test
          args: fleurs.id_id
        metrics:
          - name: Wer
            type: wer
            value: 0.9609339919173776

wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod10

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the xtreme_s dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5424
  • Wer: 0.9609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.2693 1.0 39 3.1721 1.0
2.9485 2.0 78 2.8726 1.0
2.8943 3.0 117 2.8655 1.0
2.9036 4.0 156 2.8631 1.0
2.8869 5.0 195 2.8614 1.0
2.8802 6.0 234 2.8854 1.0
2.8802 7.0 273 2.8515 1.0
2.8706 8.0 312 2.8609 1.0
2.8712 9.0 351 2.8458 1.0
2.8583 10.0 390 2.8361 1.0
2.857 11.0 429 2.8355 1.0
2.8546 12.0 468 2.8439 1.0
2.8463 13.0 507 2.8348 1.0
2.8307 14.0 546 2.7596 1.0
2.7673 15.0 585 2.6289 1.0
2.5597 16.0 624 2.3411 1.0
2.224 17.0 663 2.0992 1.0
2.0145 18.0 702 1.7290 1.0
1.7274 19.0 741 1.5571 0.9954
1.6774 20.0 780 1.4439 0.9906
1.4585 21.0 819 1.3841 1.1238
1.342 22.0 858 1.2805 0.9662
1.215 23.0 897 1.2965 0.9628
1.188 24.0 936 1.2713 0.9659
1.1147 25.0 975 1.2936 1.0251
1.0374 26.0 1014 1.2900 0.9483
0.9352 27.0 1053 1.3671 0.9908
0.9249 28.0 1092 1.3018 0.9404
0.7973 29.0 1131 1.3253 0.9631
0.7451 30.0 1170 1.4314 1.0451
0.7391 31.0 1209 1.4553 0.9909
0.699 32.0 1248 1.5116 0.9487
0.5484 33.0 1287 1.5492 0.9829
0.5106 34.0 1326 1.6631 1.0674
0.5989 35.0 1365 1.6305 1.0150
0.464 36.0 1404 1.6285 0.9430
0.4925 37.0 1443 1.7208 1.0183
0.4206 38.0 1482 1.7476 1.0040
0.3848 39.0 1521 1.8125 1.0341
0.4057 40.0 1560 1.8245 0.9750
0.3978 41.0 1599 1.7153 0.9326
0.3806 42.0 1638 1.8650 1.0025
0.3376 43.0 1677 1.9067 0.9653
0.3798 44.0 1716 2.0028 0.9396
0.2902 45.0 1755 2.0901 0.9920
0.3324 46.0 1794 1.8935 0.9729
0.3241 47.0 1833 2.0133 1.0074
0.3055 48.0 1872 2.0352 0.9943
0.2927 49.0 1911 1.9539 1.0022
0.2729 50.0 1950 2.0982 0.9910
0.2569 51.0 1989 2.1607 0.9832
0.2683 52.0 2028 2.2544 0.9705
0.2685 53.0 2067 2.1528 0.9857
0.2757 54.0 2106 2.1648 0.9490
0.2379 55.0 2145 2.2498 0.9693
0.2501 56.0 2184 2.2509 1.0282
0.2347 57.0 2223 2.2095 0.9897
0.2697 58.0 2262 2.1933 0.9695
0.2255 59.0 2301 2.2140 0.9756
0.2071 60.0 2340 2.2364 0.9787
0.228 61.0 2379 2.3069 0.9551
0.2112 62.0 2418 2.3191 0.9769
0.2224 63.0 2457 2.2679 1.0025
0.2081 64.0 2496 2.2548 0.9660
0.2149 65.0 2535 2.1813 0.9720
0.2156 66.0 2574 2.0609 0.9633
0.1916 67.0 2613 2.4192 0.9594
0.2221 68.0 2652 2.3571 1.0186
0.1849 69.0 2691 2.3650 0.9705
0.1999 70.0 2730 2.3588 0.9700
0.2314 71.0 2769 2.5680 1.0693
0.1995 72.0 2808 2.3918 1.0490
0.1842 73.0 2847 2.3448 0.9706
0.1841 74.0 2886 2.3811 0.9945
0.1836 75.0 2925 2.4134 0.9659
0.1844 76.0 2964 2.3892 0.9657
0.1933 77.0 3003 2.3327 0.9606
0.1757 78.0 3042 2.4641 0.9702
0.1794 79.0 3081 2.4175 0.9535
0.1795 80.0 3120 2.3742 0.9503
0.1859 81.0 3159 2.5093 0.9508
0.1641 82.0 3198 2.4232 0.9647
0.195 83.0 3237 2.4070 0.9474
0.1712 84.0 3276 2.4726 0.9674
0.1882 85.0 3315 2.4682 0.9643
0.1746 86.0 3354 2.4826 0.9523
0.1655 87.0 3393 2.5652 0.9495
0.1895 88.0 3432 2.4967 0.9489
0.1659 89.0 3471 2.4620 0.9695
0.1618 90.0 3510 2.4974 0.9433
0.1559 91.0 3549 2.5137 0.9599
0.1646 92.0 3588 2.4645 0.9579
0.1599 93.0 3627 2.4751 0.9612
0.1735 94.0 3666 2.5473 0.9597
0.1571 95.0 3705 2.5158 0.9675
0.1606 96.0 3744 2.5234 0.9645
0.1499 97.0 3783 2.5328 0.9612
0.1571 98.0 3822 2.5535 0.9594
0.166 99.0 3861 2.5450 0.9592
0.1651 100.0 3900 2.5424 0.9609

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2