metadata
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
tags:
- generated_from_trainer
datasets:
- all
metrics:
- precision
- recall
- f1
model-index:
- name: cardiffnlp-twitter-xlmr-finetuned-txtnly-all-42
results: []
cardiffnlp-twitter-xlmr-finetuned-txtnly-all-42
This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual on the all dataset. It achieves the following results on the evaluation set:
- Loss: 0.6972
- Precision: 0.6687
- Recall: 0.6729
- F1: 0.6703
Model description
More information needed
Usage
To use the model use the following script. Kindly set the device based on availability of the GPU.
from transformers import (pipeline)
analyzer = pipeline(
"sentiment-analysis", model="FFZG-cleopatra/M2SA-text-only"
)
input_text = "I feel amazing today."
print(analyzer(input_text)[0]["label"])
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.6122 | 0.06 | 500 | 0.8542 | 0.6559 | 0.4905 | 0.4841 |
0.5497 | 0.12 | 1000 | 0.8037 | 0.7044 | 0.6070 | 0.6209 |
0.5404 | 0.18 | 1500 | 0.9700 | 0.5591 | 0.4176 | 0.3652 |
0.5165 | 0.24 | 2000 | 0.7449 | 0.7349 | 0.5297 | 0.5369 |
0.5136 | 0.3 | 2500 | 0.7885 | 0.6766 | 0.5025 | 0.5001 |
0.5072 | 0.36 | 3000 | 0.8124 | 0.6076 | 0.6132 | 0.5917 |
0.5011 | 0.42 | 3500 | 0.8767 | 0.6427 | 0.5987 | 0.5784 |
0.5021 | 0.48 | 4000 | 0.7958 | 0.6848 | 0.6362 | 0.6503 |
0.4946 | 0.54 | 4500 | 0.8045 | 0.7220 | 0.4968 | 0.4983 |
0.4928 | 0.6 | 5000 | 0.7803 | 0.7582 | 0.5381 | 0.5503 |
0.5008 | 0.66 | 5500 | 0.7507 | 0.4407 | 0.4798 | 0.4594 |
0.4966 | 0.72 | 6000 | 0.8239 | 0.6140 | 0.6767 | 0.6311 |
0.4791 | 0.78 | 6500 | 0.7028 | 0.6568 | 0.5206 | 0.5413 |
0.494 | 0.84 | 7000 | 0.8034 | 0.6660 | 0.5189 | 0.5227 |
0.4861 | 0.9 | 7500 | 0.9003 | 0.5781 | 0.4785 | 0.4541 |
0.4804 | 0.96 | 8000 | 0.7740 | 0.6239 | 0.5775 | 0.5792 |
0.4614 | 1.02 | 8500 | 0.7397 | 0.6848 | 0.6312 | 0.6471 |
0.4315 | 1.08 | 9000 | 0.7889 | 0.6642 | 0.6035 | 0.6149 |
0.4506 | 1.14 | 9500 | 0.8784 | 0.6387 | 0.5017 | 0.4968 |
0.4489 | 1.2 | 10000 | 0.7994 | 0.5340 | 0.4964 | 0.4949 |
0.4466 | 1.26 | 10500 | 0.8110 | 0.5776 | 0.4735 | 0.4464 |
0.4319 | 1.32 | 11000 | 0.8069 | 0.6612 | 0.5399 | 0.5481 |
0.4243 | 1.38 | 11500 | 0.7942 | 0.5948 | 0.5705 | 0.5797 |
0.4398 | 1.44 | 12000 | 0.9738 | 0.5370 | 0.6070 | 0.5247 |
0.4526 | 1.5 | 12500 | 0.7196 | 0.7046 | 0.5478 | 0.5590 |
0.4529 | 1.56 | 13000 | 0.8050 | 0.6419 | 0.5731 | 0.5863 |
0.446 | 1.62 | 13500 | 0.7564 | 0.6521 | 0.5912 | 0.6107 |
0.4315 | 1.68 | 14000 | 0.7515 | 0.6475 | 0.6069 | 0.6212 |
0.4464 | 1.74 | 14500 | 0.8308 | 0.6276 | 0.5513 | 0.5599 |
0.4423 | 1.8 | 15000 | 0.7982 | 0.6176 | 0.5937 | 0.5992 |
0.4551 | 1.86 | 15500 | 0.8223 | 0.6356 | 0.5934 | 0.6020 |
0.4408 | 1.92 | 16000 | 0.7691 | 0.6088 | 0.5147 | 0.5131 |
0.4389 | 1.98 | 16500 | 0.6972 | 0.6687 | 0.6729 | 0.6703 |
0.3886 | 2.04 | 17000 | 0.7798 | 0.6126 | 0.5437 | 0.5543 |
0.3883 | 2.1 | 17500 | 0.8385 | 0.5948 | 0.6225 | 0.5978 |
0.4011 | 2.16 | 18000 | 0.7755 | 0.6551 | 0.5787 | 0.5915 |
0.3992 | 2.22 | 18500 | 0.7886 | 0.5582 | 0.5519 | 0.5472 |
0.393 | 2.28 | 19000 | 0.7660 | 0.5901 | 0.5923 | 0.5889 |
0.3891 | 2.34 | 19500 | 0.7702 | 0.5792 | 0.5331 | 0.5354 |
0.4119 | 2.41 | 20000 | 0.8545 | 0.5406 | 0.5243 | 0.5111 |
0.3981 | 2.47 | 20500 | 0.8641 | 0.5695 | 0.5536 | 0.5364 |
0.4 | 2.53 | 21000 | 0.8045 | 0.5988 | 0.5845 | 0.5822 |
0.4059 | 2.59 | 21500 | 0.8023 | 0.6301 | 0.5549 | 0.5696 |
0.3805 | 2.65 | 22000 | 0.8242 | 0.5633 | 0.5363 | 0.5387 |
0.4126 | 2.71 | 22500 | 0.8866 | 0.5630 | 0.5244 | 0.5253 |
0.3959 | 2.77 | 23000 | 0.9228 | 0.6486 | 0.5570 | 0.5716 |
0.3972 | 2.83 | 23500 | 0.8297 | 0.6415 | 0.6336 | 0.6330 |
0.3779 | 2.89 | 24000 | 0.8683 | 0.6023 | 0.5920 | 0.5897 |
0.3951 | 2.95 | 24500 | 0.8628 | 0.5892 | 0.5116 | 0.5125 |
0.3916 | 3.01 | 25000 | 0.9203 | 0.6305 | 0.5026 | 0.5024 |
0.3524 | 3.07 | 25500 | 0.9825 | 0.6089 | 0.5039 | 0.5011 |
0.3332 | 3.13 | 26000 | 0.8755 | 0.5980 | 0.5712 | 0.5814 |
0.3517 | 3.19 | 26500 | 0.9922 | 0.6701 | 0.5941 | 0.6181 |
0.3534 | 3.25 | 27000 | 0.9573 | 0.5653 | 0.5175 | 0.5243 |
0.3544 | 3.31 | 27500 | 0.9827 | 0.5739 | 0.5531 | 0.5551 |
0.3526 | 3.37 | 28000 | 0.9517 | 0.6019 | 0.4737 | 0.4657 |
0.3448 | 3.43 | 28500 | 0.9559 | 0.5744 | 0.5138 | 0.5232 |
0.3662 | 3.49 | 29000 | 0.8470 | 0.6417 | 0.6176 | 0.6173 |
0.3502 | 3.55 | 29500 | 0.8524 | 0.6606 | 0.5776 | 0.5912 |
0.3733 | 3.61 | 30000 | 0.9210 | 0.5578 | 0.5555 | 0.5466 |
0.3424 | 3.67 | 30500 | 0.9295 | 0.5863 | 0.6100 | 0.5809 |
0.3591 | 3.73 | 31000 | 0.9707 | 0.5828 | 0.4769 | 0.4588 |
0.3634 | 3.79 | 31500 | 0.8524 | 0.6136 | 0.5681 | 0.5752 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2