|
--- |
|
license: apache-2.0 |
|
base_model: biodatlab/whisper-th-small-combined |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper-small-thai |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_17_0 |
|
type: common_voice_17_0 |
|
config: th |
|
split: test |
|
args: th |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 55.432891743610334 |
|
language: |
|
- th |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper-small-thai |
|
|
|
This model is a fine-tuned version of [biodatlab/whisper-th-small-combined](https://huggingface.co/biodatlab/whisper-th-small-combined) on the common_voice_17_0 dataset. |
|
|
|
## Model description |
|
|
|
Use the model with huggingface's `transformers` as follows: |
|
|
|
```py |
|
from transformers import pipeline |
|
|
|
MODEL_NAME = "FILM6912/Whisper-small-thai" # specify the model name |
|
lang = "th" # change to Thai langauge |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids( |
|
language=lang, |
|
task="transcribe" |
|
) |
|
text = pipe("audio.mp3")["text"] # give audio mp3 and transcribe text |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |