Edit model card

whisper-medium-quartr

This model is a fine-tuned version of openai/whisper-medium on the Quartr Earnings Calls dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6825
  • Wer: 22.3137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.120528078446462e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 84
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5817 0.32 100 0.5708 21.9832
0.5817 0.64 200 0.5332 20.1559
0.5253 0.96 300 0.5127 25.4256
0.3177 1.28 400 0.5276 28.5688
0.3603 1.61 500 0.5195 22.2950
0.3374 1.93 600 0.5101 24.3343
0.1734 2.25 700 0.5530 23.1743
0.2002 2.57 800 0.5525 21.1537
0.1894 2.89 900 0.5589 21.7774
0.0868 3.21 1000 0.6291 23.4487
0.0931 3.53 1100 0.6410 21.9208
0.1094 3.85 1200 0.6339 22.5008
0.1007 4.17 1300 0.6698 21.7524
0.0652 4.49 1400 0.6820 22.3262
0.0614 4.82 1500 0.6825 22.3137

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FarhadMadadzade/whisper-medium-quartr

Finetuned
(446)
this model

Evaluation results