Edit model card

whisper-small-quartr

This model is a fine-tuned version of openai/whisper-small on the Quartr Earnings Calls dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6429
  • Wer: 32.8344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.120528078446462e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 84
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6771 0.32 100 0.6577 25.7437
0.6533 0.64 200 0.6025 34.6804
0.5793 0.96 300 0.5784 24.3530
0.3872 1.28 400 0.5856 32.9592
0.4447 1.61 500 0.5646 23.2429
0.414 1.93 600 0.5616 70.7016
0.2489 2.25 700 0.5816 35.2666
0.2863 2.57 800 0.5853 24.7583
0.2698 2.89 900 0.5844 32.7409
0.1646 3.21 1000 0.6182 27.7892
0.174 3.53 1100 0.6228 36.2021
0.2021 3.85 1200 0.6269 35.9775
0.2239 4.17 1300 0.6367 35.2666
0.1551 4.49 1400 0.6420 32.4478
0.1351 4.82 1500 0.6429 32.8344

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FarhadMadadzade/whisper-small-quartr

Finetuned
(1867)
this model

Evaluation results