Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3-mini-128k-instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Fischerboot/freedom-rp-alpaca-shortend
    type: alpaca:phi
  - path: Fischerboot/mongotom-40k-alpaca
    type: alpaca:phi
  - path: Fischerboot/DAN-alpaca
    type: alpaca:phi

dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out/yuh

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 5.0e-6

train_on_inputs: false
group_by_length: false
bf16: auto

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

out/yuh

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
4.296 0.0007 1 4.7549
4.3774 1.0 1521 4.1032
3.5409 1.9855 3042 4.0949
3.8041 2.9711 4563 4.0953
3.9558 3.9560 6084 4.0955

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Fischerboot/phi3-mini-28k-inst-adapter-m

Adapter
(126)
this model