|
--- |
|
license: apache-2.0 |
|
base_model: Flamenco43/MatBERT |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: MatBERTNanoQA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nananansnsns/LLLM/runs/ucjaut87) |
|
# MatBERTNanoQA |
|
|
|
This model is a fine-tuned version of [Flamenco43/MatBERT](https://huggingface.co/Flamenco43/MatBERT) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1722 |
|
- F1: 74.5785 |
|
- Em: 62.5 |
|
- Precision: 0 |
|
- Recall: 0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Em | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:---------:|:------:| |
|
| 1.1937 | 1.0 | 1118 | 1.5914 | 67.1538 | 50.0 | 0 | 0 | |
|
| 1.0172 | 2.0 | 2236 | 1.3482 | 72.0843 | 59.6154 | 0 | 0 | |
|
| 0.8463 | 3.0 | 3354 | 1.2223 | 74.0304 | 62.5 | 0 | 0 | |
|
| 0.7447 | 4.0 | 4472 | 1.1722 | 74.5785 | 62.5 | 0 | 0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|