MatBERT_800abstracts_NER
This model is a fine-tuned version of Flamenco43/MatBERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1728
- Precision: 0.8484
- Recall: 0.8869
- F1: 0.8672
- Accuracy: 0.9497
- Per Tag Metrics: {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9977086890106928}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949231736903585}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944289693593314}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973941953454938}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952825950220145}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9656303351603918}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9866564830622697}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974391230119508}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956869440201276}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9864767723964417}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9975739060113218}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9945637523587025}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Per Tag Metrics |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 221 | 0.1873 | 0.8001 | 0.8524 | 0.8255 | 0.9376 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9960463653517836}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962710036840686}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9986970976727468}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9924521520352233}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9928115733668793}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9948782460239015}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9995057956689729}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9581274148620721}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9846796657381616}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9971695570132088}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9954173780213855}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9838260400754785}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9968999910144667}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9916434540389972}} |
No log | 2.0 | 442 | 0.1639 | 0.8259 | 0.8718 | 0.8482 | 0.9464 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9964956420163537}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9970797016802947}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9988318806721179}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9940695480276754}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9933956330308203}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972144846796658}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9951028843561865}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9644622158325097}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9865217000628987}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9971246293467517}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9954173780213855}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9857579297331297}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9976188336777788}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9938449096953904}} |
0.2438 | 3.0 | 663 | 0.1699 | 0.8348 | 0.8784 | 0.8561 | 0.9487 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967202803486387}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972594123461227}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9947434630245305}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9943391140264175}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973043400125797}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9953275226884716}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9655404798274778}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9870159043939257}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973043400125797}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956420163536706}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9860724233983287}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9976637613442357}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9936202713631054}} |
0.2438 | 4.0 | 884 | 0.1728 | 0.8484 | 0.8869 | 0.8672 | 0.9497 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9977086890106928}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949231736903585}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944289693593314}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973941953454938}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952825950220145}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9656303351603918}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9866564830622697}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974391230119508}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956869440201276}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9864767723964417}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9975739060113218}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9945637523587025}} |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Flamenco43/MatBERT_800abstracts_NER
Base model
Flamenco43/MatBERT