Edit model card

MatBERT_800abstracts_NER

This model is a fine-tuned version of Flamenco43/MatBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1728
  • Precision: 0.8484
  • Recall: 0.8869
  • F1: 0.8672
  • Accuracy: 0.9497
  • Per Tag Metrics: {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9977086890106928}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949231736903585}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944289693593314}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973941953454938}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952825950220145}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9656303351603918}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9866564830622697}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974391230119508}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956869440201276}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9864767723964417}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9975739060113218}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9945637523587025}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Per Tag Metrics
No log 1.0 221 0.1873 0.8001 0.8524 0.8255 0.9376 {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9960463653517836}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962710036840686}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9986970976727468}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9924521520352233}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9928115733668793}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9948782460239015}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9995057956689729}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9581274148620721}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9846796657381616}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9971695570132088}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9954173780213855}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9838260400754785}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9968999910144667}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9916434540389972}}
No log 2.0 442 0.1639 0.8259 0.8718 0.8482 0.9464 {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9964956420163537}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9970797016802947}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9988318806721179}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9940695480276754}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9933956330308203}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972144846796658}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9951028843561865}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9644622158325097}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9865217000628987}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9971246293467517}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9954173780213855}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9857579297331297}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9976188336777788}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9938449096953904}}
0.2438 3.0 663 0.1699 0.8348 0.8784 0.8561 0.9487 {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967202803486387}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972594123461227}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9947434630245305}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9943391140264175}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973043400125797}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9953275226884716}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9655404798274778}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9870159043939257}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973043400125797}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956420163536706}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9860724233983287}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9976637613442357}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9936202713631054}}
0.2438 4.0 884 0.1728 0.8484 0.8869 0.8672 0.9497 {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9967652080150957}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9977086890106928}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999056519004403}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949231736903585}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944289693593314}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9973941953454938}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952825950220145}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999865217000629}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9656303351603918}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9866564830622697}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974391230119508}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9956869440201276}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9864767723964417}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9975739060113218}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9945637523587025}}

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Flamenco43/MatBERT_800abstracts_NER

Base model

Flamenco43/MatBERT
Finetuned
(5)
this model