Flocksserver's picture
End of training
ade517e verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - emodb
metrics:
  - accuracy
model-index:
  - name: whisper-large-v3-de-emodb-emotion-classification
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Emo-DB
          type: emodb
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9439252336448598

whisper-large-v3-de-emodb-emotion-classification

This model is a fine-tuned version of openai/whisper-large-v3 on the Emo-DB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3724
  • Accuracy: 0.9439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3351 1.0 214 1.1022 0.4953
0.2644 2.0 428 0.7572 0.7477
0.3796 3.0 642 1.0055 0.8131
0.0038 4.0 856 1.0754 0.8131
0.001 5.0 1070 0.5485 0.9159
0.001 6.0 1284 0.5881 0.8785
0.0007 7.0 1498 0.3376 0.9439
0.0006 8.0 1712 0.3592 0.9439
0.0006 9.0 1926 0.3695 0.9439
0.0004 10.0 2140 0.3724 0.9439

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1