Grammar_Summarizer / README.md
Floyd93's picture
End of training
e6bfd31
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Grammar_Summarizer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Grammar_Summarizer
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5127
- Rouge1: 0.4494
- Rouge2: 0.3672
- Rougel: 0.3833
- Rougelsum: 0.3849
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.2799 | 0.25 | 100 | 1.0334 | 0.3916 | 0.3085 | 0.2696 | 0.2717 |
| 1.0618 | 0.5 | 200 | 0.6095 | 0.3287 | 0.2746 | 0.2891 | 0.2900 |
| 0.8719 | 0.76 | 300 | 0.5127 | 0.4494 | 0.3672 | 0.3833 | 0.3849 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0