Edit model card

SweStarling-ties

SweStarling-ties is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: timpal0l/Mistral-7B-v0.1-flashback-v2
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: RJuro/munin-neuralbeagle-7b
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: AI-Sweden-Models/tyr
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
  normalize: true
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "FredrikBL/SweStarling-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
6
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FredrikBL/SweStarling-ties