distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3739
- Accuracy: 0.9128
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1885 | 1.0 | 4210 | 0.3092 | 0.9083 |
0.1311 | 2.0 | 8420 | 0.3809 | 0.9071 |
0.1036 | 3.0 | 12630 | 0.3739 | 0.9128 |
0.0629 | 4.0 | 16840 | 0.4623 | 0.9083 |
0.036 | 5.0 | 21050 | 0.5198 | 0.9048 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.