|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- absa |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: hp:game yg grafiknya standar boros batrai bikin hp cepat panas game satunya |
|
brawlstar ga |
|
- text: game:game cocok indonesia gw main game dibilang berat squad buster jaringan |
|
game berat bagus squad buster main koneksi terputus koneksi aman aman aja mohon |
|
perbaiki jaringan |
|
- text: sinyal:prmainannya bagus sinyal diperbaiki maen game online gak bagus2 aja |
|
pingnya eh maen squad busters jaringannya hilang2 pas match klok sinyal udah hilang |
|
masuk tulisan server konek muat ulang gak masuk in game saran tolong diperbaiki |
|
ya min klok grafik gameplay udah bagus |
|
- text: saran semoga game:gamenya bagus kendala game nya kadang kadang suka jaringan |
|
jaringan bagus saran semoga game nya ditingkatkan disaat update |
|
- text: gameplay:gameplay nya bagus gk match nya optimal main kadang suka lag gitu |
|
sinyal nya bagus tolong supercell perbaiki sinyal |
|
pipeline_tag: text-classification |
|
inference: false |
|
model-index: |
|
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8307086614173228 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
This model was trained within the context of a larger system for ABSA, which looks like so: |
|
|
|
1. Use a spaCy model to select possible aspect span candidates. |
|
2. **Use this SetFit model to filter these possible aspect span candidates.** |
|
3. Use a SetFit model to classify the filtered aspect span candidates. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **spaCy Model:** id_core_news_trf |
|
- **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-aspect](https://huggingface.co/Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-aspect) |
|
- **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-polarity](https://huggingface.co/Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-polarity) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| aspect | <ul><li>'pencarian lawan:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'game:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'bugnya:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> | |
|
| no aspect | <ul><li>'player trophy mahkotanya jaraknya:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'peleton akun perbedaan level:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'y coc cr:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8307 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import AbsaModel |
|
|
|
# Download from the 🤗 Hub |
|
model = AbsaModel.from_pretrained( |
|
"Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-aspect", |
|
"Funnyworld1412/ABSA_Roberta-large_MiniLM-L6-polarity", |
|
) |
|
# Run inference |
|
preds = model("The food was great, but the venue is just way too busy.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 2 | 29.9357 | 80 | |
|
|
|
| Label | Training Sample Count | |
|
|:----------|:----------------------| |
|
| no aspect | 3834 | |
|
| aspect | 1266 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (4, 4) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 5 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:-----:|:-------------:|:---------------:| |
|
| 0.0001 | 1 | 0.2715 | - | |
|
| 0.0039 | 50 | 0.2364 | - | |
|
| 0.0078 | 100 | 0.1076 | - | |
|
| 0.0118 | 150 | 0.3431 | - | |
|
| 0.0157 | 200 | 0.2411 | - | |
|
| 0.0196 | 250 | 0.361 | - | |
|
| 0.0235 | 300 | 0.2227 | - | |
|
| 0.0275 | 350 | 0.2087 | - | |
|
| 0.0314 | 400 | 0.1956 | - | |
|
| 0.0353 | 450 | 0.2815 | - | |
|
| 0.0392 | 500 | 0.1844 | - | |
|
| 0.0431 | 550 | 0.2053 | - | |
|
| 0.0471 | 600 | 0.2884 | - | |
|
| 0.0510 | 650 | 0.1043 | - | |
|
| 0.0549 | 700 | 0.2074 | - | |
|
| 0.0588 | 750 | 0.1627 | - | |
|
| 0.0627 | 800 | 0.3 | - | |
|
| 0.0667 | 850 | 0.1658 | - | |
|
| 0.0706 | 900 | 0.1582 | - | |
|
| 0.0745 | 950 | 0.2692 | - | |
|
| 0.0784 | 1000 | 0.1823 | - | |
|
| 0.0824 | 1050 | 0.4098 | - | |
|
| 0.0863 | 1100 | 0.1992 | - | |
|
| 0.0902 | 1150 | 0.0793 | - | |
|
| 0.0941 | 1200 | 0.3924 | - | |
|
| 0.0980 | 1250 | 0.0339 | - | |
|
| 0.1020 | 1300 | 0.2236 | - | |
|
| 0.1059 | 1350 | 0.2262 | - | |
|
| 0.1098 | 1400 | 0.111 | - | |
|
| 0.1137 | 1450 | 0.0223 | - | |
|
| 0.1176 | 1500 | 0.3994 | - | |
|
| 0.1216 | 1550 | 0.0417 | - | |
|
| 0.1255 | 1600 | 0.3319 | - | |
|
| 0.1294 | 1650 | 0.3223 | - | |
|
| 0.1333 | 1700 | 0.2943 | - | |
|
| 0.1373 | 1750 | 0.1273 | - | |
|
| 0.1412 | 1800 | 0.2863 | - | |
|
| 0.1451 | 1850 | 0.0988 | - | |
|
| 0.1490 | 1900 | 0.1593 | - | |
|
| 0.1529 | 1950 | 0.2209 | - | |
|
| 0.1569 | 2000 | 0.5017 | - | |
|
| 0.1608 | 2050 | 0.1392 | - | |
|
| 0.1647 | 2100 | 0.1372 | - | |
|
| 0.1686 | 2150 | 0.3491 | - | |
|
| 0.1725 | 2200 | 0.2693 | - | |
|
| 0.1765 | 2250 | 0.1988 | - | |
|
| 0.1804 | 2300 | 0.2765 | - | |
|
| 0.1843 | 2350 | 0.238 | - | |
|
| 0.1882 | 2400 | 0.0577 | - | |
|
| 0.1922 | 2450 | 0.2253 | - | |
|
| 0.1961 | 2500 | 0.16 | - | |
|
| 0.2 | 2550 | 0.0262 | - | |
|
| 0.2039 | 2600 | 0.0099 | - | |
|
| 0.2078 | 2650 | 0.0132 | - | |
|
| 0.2118 | 2700 | 0.2356 | - | |
|
| 0.2157 | 2750 | 0.2975 | - | |
|
| 0.2196 | 2800 | 0.154 | - | |
|
| 0.2235 | 2850 | 0.0308 | - | |
|
| 0.2275 | 2900 | 0.0497 | - | |
|
| 0.2314 | 2950 | 0.0523 | - | |
|
| 0.2353 | 3000 | 0.158 | - | |
|
| 0.2392 | 3050 | 0.0473 | - | |
|
| 0.2431 | 3100 | 0.208 | - | |
|
| 0.2471 | 3150 | 0.2126 | - | |
|
| 0.2510 | 3200 | 0.081 | - | |
|
| 0.2549 | 3250 | 0.0134 | - | |
|
| 0.2588 | 3300 | 0.1107 | - | |
|
| 0.2627 | 3350 | 0.0249 | - | |
|
| 0.2667 | 3400 | 0.0259 | - | |
|
| 0.2706 | 3450 | 0.1008 | - | |
|
| 0.2745 | 3500 | 0.0335 | - | |
|
| 0.2784 | 3550 | 0.0119 | - | |
|
| 0.2824 | 3600 | 0.2982 | - | |
|
| 0.2863 | 3650 | 0.1516 | - | |
|
| 0.2902 | 3700 | 0.1217 | - | |
|
| 0.2941 | 3750 | 0.1558 | - | |
|
| 0.2980 | 3800 | 0.0359 | - | |
|
| 0.3020 | 3850 | 0.0215 | - | |
|
| 0.3059 | 3900 | 0.2906 | - | |
|
| 0.3098 | 3950 | 0.0599 | - | |
|
| 0.3137 | 4000 | 0.1528 | - | |
|
| 0.3176 | 4050 | 0.0144 | - | |
|
| 0.3216 | 4100 | 0.298 | - | |
|
| 0.3255 | 4150 | 0.0174 | - | |
|
| 0.3294 | 4200 | 0.0093 | - | |
|
| 0.3333 | 4250 | 0.0329 | - | |
|
| 0.3373 | 4300 | 0.1795 | - | |
|
| 0.3412 | 4350 | 0.0712 | - | |
|
| 0.3451 | 4400 | 0.3703 | - | |
|
| 0.3490 | 4450 | 0.0873 | - | |
|
| 0.3529 | 4500 | 0.3223 | - | |
|
| 0.3569 | 4550 | 0.0045 | - | |
|
| 0.3608 | 4600 | 0.2188 | - | |
|
| 0.3647 | 4650 | 0.0085 | - | |
|
| 0.3686 | 4700 | 0.2089 | - | |
|
| 0.3725 | 4750 | 0.0052 | - | |
|
| 0.3765 | 4800 | 0.1459 | - | |
|
| 0.3804 | 4850 | 0.0711 | - | |
|
| 0.3843 | 4900 | 0.4268 | - | |
|
| 0.3882 | 4950 | 0.1842 | - | |
|
| 0.3922 | 5000 | 0.1661 | - | |
|
| 0.3961 | 5050 | 0.1028 | - | |
|
| 0.4 | 5100 | 0.067 | - | |
|
| 0.4039 | 5150 | 0.1708 | - | |
|
| 0.4078 | 5200 | 0.1001 | - | |
|
| 0.4118 | 5250 | 0.065 | - | |
|
| 0.4157 | 5300 | 0.0279 | - | |
|
| 0.4196 | 5350 | 0.1101 | - | |
|
| 0.4235 | 5400 | 0.1923 | - | |
|
| 0.4275 | 5450 | 0.5491 | - | |
|
| 0.4314 | 5500 | 0.0726 | - | |
|
| 0.4353 | 5550 | 0.0085 | - | |
|
| 0.4392 | 5600 | 0.194 | - | |
|
| 0.4431 | 5650 | 0.2527 | - | |
|
| 0.4471 | 5700 | 0.7134 | - | |
|
| 0.4510 | 5750 | 0.4542 | - | |
|
| 0.4549 | 5800 | 0.2779 | - | |
|
| 0.4588 | 5850 | 0.1024 | - | |
|
| 0.4627 | 5900 | 0.2483 | - | |
|
| 0.4667 | 5950 | 0.0163 | - | |
|
| 0.4706 | 6000 | 0.0095 | - | |
|
| 0.4745 | 6050 | 0.2902 | - | |
|
| 0.4784 | 6100 | 0.0111 | - | |
|
| 0.4824 | 6150 | 0.0296 | - | |
|
| 0.4863 | 6200 | 0.3792 | - | |
|
| 0.4902 | 6250 | 0.4387 | - | |
|
| 0.4941 | 6300 | 0.1547 | - | |
|
| 0.4980 | 6350 | 0.0617 | - | |
|
| 0.5020 | 6400 | 0.1384 | - | |
|
| 0.5059 | 6450 | 0.0677 | - | |
|
| 0.5098 | 6500 | 0.0454 | - | |
|
| 0.5137 | 6550 | 0.0074 | - | |
|
| 0.5176 | 6600 | 0.1994 | - | |
|
| 0.5216 | 6650 | 0.0168 | - | |
|
| 0.5255 | 6700 | 0.0416 | - | |
|
| 0.5294 | 6750 | 0.1898 | - | |
|
| 0.5333 | 6800 | 0.0207 | - | |
|
| 0.5373 | 6850 | 0.1046 | - | |
|
| 0.5412 | 6900 | 0.1994 | - | |
|
| 0.5451 | 6950 | 0.0435 | - | |
|
| 0.5490 | 7000 | 0.0149 | - | |
|
| 0.5529 | 7050 | 0.0067 | - | |
|
| 0.5569 | 7100 | 0.0122 | - | |
|
| 0.5608 | 7150 | 0.2406 | - | |
|
| 0.5647 | 7200 | 0.4473 | - | |
|
| 0.5686 | 7250 | 0.0469 | - | |
|
| 0.5725 | 7300 | 0.1782 | - | |
|
| 0.5765 | 7350 | 0.3386 | - | |
|
| 0.5804 | 7400 | 0.2804 | - | |
|
| 0.5843 | 7450 | 0.0072 | - | |
|
| 0.5882 | 7500 | 0.0451 | - | |
|
| 0.5922 | 7550 | 0.0188 | - | |
|
| 0.5961 | 7600 | 0.01 | - | |
|
| 0.6 | 7650 | 0.0048 | - | |
|
| 0.6039 | 7700 | 0.2349 | - | |
|
| 0.6078 | 7750 | 0.2052 | - | |
|
| 0.6118 | 7800 | 0.0838 | - | |
|
| 0.6157 | 7850 | 0.3052 | - | |
|
| 0.6196 | 7900 | 0.3667 | - | |
|
| 0.6235 | 7950 | 0.0044 | - | |
|
| 0.6275 | 8000 | 0.3612 | - | |
|
| 0.6314 | 8050 | 0.2082 | - | |
|
| 0.6353 | 8100 | 0.3384 | - | |
|
| 0.6392 | 8150 | 0.022 | - | |
|
| 0.6431 | 8200 | 0.0764 | - | |
|
| 0.6471 | 8250 | 0.2879 | - | |
|
| 0.6510 | 8300 | 0.1827 | - | |
|
| 0.6549 | 8350 | 0.1104 | - | |
|
| 0.6588 | 8400 | 0.2096 | - | |
|
| 0.6627 | 8450 | 0.2103 | - | |
|
| 0.6667 | 8500 | 0.0742 | - | |
|
| 0.6706 | 8550 | 0.2186 | - | |
|
| 0.6745 | 8600 | 0.0109 | - | |
|
| 0.6784 | 8650 | 0.0326 | - | |
|
| 0.6824 | 8700 | 0.3056 | - | |
|
| 0.6863 | 8750 | 0.0941 | - | |
|
| 0.6902 | 8800 | 0.3731 | - | |
|
| 0.6941 | 8850 | 0.2185 | - | |
|
| 0.6980 | 8900 | 0.0228 | - | |
|
| 0.7020 | 8950 | 0.0141 | - | |
|
| 0.7059 | 9000 | 0.2242 | - | |
|
| 0.7098 | 9050 | 0.3303 | - | |
|
| 0.7137 | 9100 | 0.2383 | - | |
|
| 0.7176 | 9150 | 0.0026 | - | |
|
| 0.7216 | 9200 | 0.1718 | - | |
|
| 0.7255 | 9250 | 0.053 | - | |
|
| 0.7294 | 9300 | 0.0023 | - | |
|
| 0.7333 | 9350 | 0.221 | - | |
|
| 0.7373 | 9400 | 0.0021 | - | |
|
| 0.7412 | 9450 | 0.2333 | - | |
|
| 0.7451 | 9500 | 0.0565 | - | |
|
| 0.7490 | 9550 | 0.0271 | - | |
|
| 0.7529 | 9600 | 0.2156 | - | |
|
| 0.7569 | 9650 | 0.2349 | - | |
|
| 0.7608 | 9700 | 0.0047 | - | |
|
| 0.7647 | 9750 | 0.1273 | - | |
|
| 0.7686 | 9800 | 0.0139 | - | |
|
| 0.7725 | 9850 | 0.0231 | - | |
|
| 0.7765 | 9900 | 0.0048 | - | |
|
| 0.7804 | 9950 | 0.0022 | - | |
|
| 0.7843 | 10000 | 0.0026 | - | |
|
| 0.7882 | 10050 | 0.0223 | - | |
|
| 0.7922 | 10100 | 0.5488 | - | |
|
| 0.7961 | 10150 | 0.0281 | - | |
|
| 0.8 | 10200 | 0.0999 | - | |
|
| 0.8039 | 10250 | 0.2154 | - | |
|
| 0.8078 | 10300 | 0.0109 | - | |
|
| 0.8118 | 10350 | 0.0019 | - | |
|
| 0.8157 | 10400 | 0.1264 | - | |
|
| 0.8196 | 10450 | 0.0029 | - | |
|
| 0.8235 | 10500 | 0.3785 | - | |
|
| 0.8275 | 10550 | 0.0366 | - | |
|
| 0.8314 | 10600 | 0.0527 | - | |
|
| 0.8353 | 10650 | 0.2355 | - | |
|
| 0.8392 | 10700 | 0.0833 | - | |
|
| 0.8431 | 10750 | 0.1612 | - | |
|
| 0.8471 | 10800 | 0.0071 | - | |
|
| 0.8510 | 10850 | 0.1128 | - | |
|
| 0.8549 | 10900 | 0.2521 | - | |
|
| 0.8588 | 10950 | 0.0403 | - | |
|
| 0.8627 | 11000 | 0.2196 | - | |
|
| 0.8667 | 11050 | 0.1441 | - | |
|
| 0.8706 | 11100 | 0.0295 | - | |
|
| 0.8745 | 11150 | 0.0047 | - | |
|
| 0.8784 | 11200 | 0.3089 | - | |
|
| 0.8824 | 11250 | 0.1055 | - | |
|
| 0.8863 | 11300 | 0.0064 | - | |
|
| 0.8902 | 11350 | 0.2119 | - | |
|
| 0.8941 | 11400 | 0.2145 | - | |
|
| 0.8980 | 11450 | 0.0128 | - | |
|
| 0.9020 | 11500 | 0.0086 | - | |
|
| 0.9059 | 11550 | 0.1803 | - | |
|
| 0.9098 | 11600 | 0.2277 | - | |
|
| 0.9137 | 11650 | 0.0204 | - | |
|
| 0.9176 | 11700 | 0.0105 | - | |
|
| 0.9216 | 11750 | 0.005 | - | |
|
| 0.9255 | 11800 | 0.0099 | - | |
|
| 0.9294 | 11850 | 0.004 | - | |
|
| 0.9333 | 11900 | 0.1824 | - | |
|
| 0.9373 | 11950 | 0.0021 | - | |
|
| 0.9412 | 12000 | 0.2231 | - | |
|
| 0.9451 | 12050 | 0.0017 | - | |
|
| 0.9490 | 12100 | 0.0752 | - | |
|
| 0.9529 | 12150 | 0.0129 | - | |
|
| 0.9569 | 12200 | 0.1644 | - | |
|
| 0.9608 | 12250 | 0.0305 | - | |
|
| 0.9647 | 12300 | 0.0133 | - | |
|
| 0.9686 | 12350 | 0.0687 | - | |
|
| 0.9725 | 12400 | 0.0039 | - | |
|
| 0.9765 | 12450 | 0.1179 | - | |
|
| 0.9804 | 12500 | 0.1867 | - | |
|
| 0.9843 | 12550 | 0.0225 | - | |
|
| 0.9882 | 12600 | 0.1914 | - | |
|
| 0.9922 | 12650 | 0.0592 | - | |
|
| 0.9961 | 12700 | 0.0059 | - | |
|
| 1.0 | 12750 | 0.1016 | 0.2295 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- spaCy: 3.7.5 |
|
- Transformers: 4.36.2 |
|
- PyTorch: 2.1.2 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |