GIZ
/

ppsingh's picture
Update README.md
8099a4a verified
---
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: ADAPMIT-multilabel-bge
results: []
datasets:
- GIZ/policy_classification
library_name: transformers
co2_eq_emissions:
emissions: 40.5174303026829
source: codecarbon
training_type: fine-tuning
on_cloud: true
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
ram_total_size: 12.6747894287109
hours_used: 0.994
hardware_used: 1 x Tesla T4
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ADAPMIT-multilabel-bge
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3101
- Precision-micro: 0.9058
- Precision-samples: 0.8647
- Precision-weighted: 0.9058
- Recall-micro: 0.9305
- Recall-samples: 0.8693
- Recall-weighted: 0.9305
- F1-micro: 0.9180
- F1-samples: 0.8622
- F1-weighted: 0.9180
## Model description
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels -
AdaptationLabel, MitigationLabel - that are relevant to a particular task or application
## Intended uses & limitations
More information needed
## Training and evaluation data
- Training Dataset: 12538
| Class | Positive Count of Class|
|:-------------|:--------|
| AdaptationLabel | 5439 |
| MitigationLabel | 6659 |
- Validation Dataset: 1190
| Class | Positive Count of Class|
|:-------------|:--------|
| AdaptationLabel | 533 |
| MitigationLabel | 604 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.08e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:|
| 0.3368 | 1.0 | 784 | 0.2917 | 0.8651 | 0.8450 | 0.8664 | 0.9138 | 0.8542 | 0.9138 | 0.8888 | 0.8437 | 0.8890 |
| 0.1807 | 2.0 | 1568 | 0.2549 | 0.9092 | 0.8643 | 0.9094 | 0.9156 | 0.8571 | 0.9156 | 0.9124 | 0.8571 | 0.9123 |
| 0.0955 | 3.0 | 2352 | 0.2988 | 0.9069 | 0.8660 | 0.9072 | 0.9252 | 0.8655 | 0.9252 | 0.9160 | 0.8613 | 0.9160 |
| 0.0495 | 4.0 | 3136 | 0.3101 | 0.9058 | 0.8647 | 0.9058 | 0.9305 | 0.8693 | 0.9305 | 0.9180 | 0.8622 | 0.9180 |
|label | precision |recall |f1-score| support|
|:-------------:|:---------:|:-----:|:------:|:------:|
|AdaptationLabel |0.910 |0.928 |0.919 | 533.0 |
|MitigationLabel |0.902 |0.932 |0.917 | 604.0 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.04051 kg of CO2
- **Hours Used**: 0.994 hours
### Training Hardware
- **On Cloud**: yes
- **GPU Model**: 1 x Tesla T4
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
- **RAM Size**: 12.67 GB
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2