|
--- |
|
license: mit |
|
base_model: BAAI/bge-base-en-v1.5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ADAPMIT-multilabel-bge |
|
results: [] |
|
datasets: |
|
- GIZ/policy_classification |
|
library_name: transformers |
|
co2_eq_emissions: |
|
emissions: 40.5174303026829 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: true |
|
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz |
|
ram_total_size: 12.6747894287109 |
|
hours_used: 0.994 |
|
hardware_used: 1 x Tesla T4 |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ADAPMIT-multilabel-bge |
|
|
|
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3101 |
|
- Precision-micro: 0.9058 |
|
- Precision-samples: 0.8647 |
|
- Precision-weighted: 0.9058 |
|
- Recall-micro: 0.9305 |
|
- Recall-samples: 0.8693 |
|
- Recall-weighted: 0.9305 |
|
- F1-micro: 0.9180 |
|
- F1-samples: 0.8622 |
|
- F1-weighted: 0.9180 |
|
|
|
## Model description |
|
|
|
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels - |
|
AdaptationLabel, MitigationLabel - that are relevant to a particular task or application |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
- Training Dataset: 12538 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| AdaptationLabel | 5439 | |
|
| MitigationLabel | 6659 | |
|
|
|
|
|
- Validation Dataset: 1190 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| AdaptationLabel | 533 | |
|
| MitigationLabel | 604 | |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.08e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| |
|
| 0.3368 | 1.0 | 784 | 0.2917 | 0.8651 | 0.8450 | 0.8664 | 0.9138 | 0.8542 | 0.9138 | 0.8888 | 0.8437 | 0.8890 | |
|
| 0.1807 | 2.0 | 1568 | 0.2549 | 0.9092 | 0.8643 | 0.9094 | 0.9156 | 0.8571 | 0.9156 | 0.9124 | 0.8571 | 0.9123 | |
|
| 0.0955 | 3.0 | 2352 | 0.2988 | 0.9069 | 0.8660 | 0.9072 | 0.9252 | 0.8655 | 0.9252 | 0.9160 | 0.8613 | 0.9160 | |
|
| 0.0495 | 4.0 | 3136 | 0.3101 | 0.9058 | 0.8647 | 0.9058 | 0.9305 | 0.8693 | 0.9305 | 0.9180 | 0.8622 | 0.9180 | |
|
|label | precision |recall |f1-score| support| |
|
|:-------------:|:---------:|:-----:|:------:|:------:| |
|
|AdaptationLabel |0.910 |0.928 |0.919 | 533.0 | |
|
|MitigationLabel |0.902 |0.932 |0.917 | 604.0 | |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.04051 kg of CO2 |
|
- **Hours Used**: 0.994 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: yes |
|
- **GPU Model**: 1 x Tesla T4 |
|
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz |
|
- **RAM Size**: 12.67 GB |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |