CPU-Paper
Collection
Explore the use of NLP as a tool for policy advisors to efficiently track and assess climate policy documents (CPU: Climate Policy Understanding)
•
12 items
•
Updated
•
3
This model is a fine-tuned version of climatebert/distilroberta-base-climate-f on the Policy-Classification dataset. It achieves the following results on the evaluation set:
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels - AdaptationLabel, MitigationLabel - that are relevant to a particular task or application
More information needed
Training Dataset: 12538
Class | Positive Count of Class |
---|---|
AdaptationLabel | 5439 |
MitigationLabel | 6659 |
Validation Dataset: 1190
Class | Positive Count of Class |
---|---|
AdaptationLabel | 533 |
MitigationLabel | 604 |
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3512 | 1.0 | 784 | 0.3253 | 0.8530 | 0.8273 | 0.8572 | 0.8883 | 0.8311 | 0.8883 | 0.8703 | 0.8238 | 0.8703 |
0.2152 | 2.0 | 1568 | 0.2604 | 0.8999 | 0.8580 | 0.9002 | 0.9094 | 0.8521 | 0.9094 | 0.9046 | 0.8510 | 0.9046 |
0.1348 | 3.0 | 2352 | 0.2908 | 0.9038 | 0.8626 | 0.9059 | 0.9173 | 0.8588 | 0.9173 | 0.9105 | 0.8566 | 0.9107 |
0.0767 | 4.0 | 3136 | 0.3367 | 0.8999 | 0.8563 | 0.9000 | 0.9173 | 0.8588 | 0.9173 | 0.9085 | 0.8524 | 0.9085 |
0.0475 | 5.0 | 3920 | 0.3535 | 0.8999 | 0.8559 | 0.9001 | 0.9173 | 0.8592 | 0.9173 | 0.9085 | 0.8521 | 0.9085 |
label | precision | recall | f1-score | support |
---|---|---|---|---|
AdaptationLabel | 0.909 | 0.908 | 0.909 | 533.0 |
MitigationLabel | 0.891 | 0.925 | 0.908 | 604.0 |
Carbon emissions were measured using CodeCarbon.
Base model
climatebert/distilroberta-base-climate-f