Update README.md
Browse files
README.md
CHANGED
@@ -10,13 +10,13 @@ datasets:
|
|
10 |
- GIZ/policy_classification
|
11 |
|
12 |
co2_eq_emissions:
|
13 |
-
emissions:
|
14 |
source: codecarbon
|
15 |
training_type: fine-tuning
|
16 |
on_cloud: true
|
17 |
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
|
18 |
ram_total_size: 12.6747894287109
|
19 |
-
hours_used: 0.
|
20 |
hardware_used: 1 x Tesla T4
|
21 |
---
|
22 |
|
@@ -52,21 +52,49 @@ More information needed
|
|
52 |
|
53 |
## Training and evaluation data
|
54 |
|
55 |
-
- Training Dataset:
|
56 |
| Class | Positive Count of Class|
|
57 |
|:-------------|:--------|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
63 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
| Class | Positive Count of Class|
|
65 |
|:-------------|:--------|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
## Training procedure
|
72 |
|
@@ -96,15 +124,29 @@ The following hyperparameters were used during training:
|
|
96 |
|
97 |
|label | precision |recall |f1-score| support|
|
98 |
|:-------------:|:---------:|:-----:|:------:|:------:|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
### Environmental Impact
|
105 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
106 |
-
- **Carbon Emitted**: 0.
|
107 |
-
- **Hours Used**: 0.
|
108 |
|
109 |
### Training Hardware
|
110 |
- **On Cloud**: yes
|
|
|
10 |
- GIZ/policy_classification
|
11 |
|
12 |
co2_eq_emissions:
|
13 |
+
emissions: 28.6797414394632
|
14 |
source: codecarbon
|
15 |
training_type: fine-tuning
|
16 |
on_cloud: true
|
17 |
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
|
18 |
ram_total_size: 12.6747894287109
|
19 |
+
hours_used: 0.706
|
20 |
hardware_used: 1 x Tesla T4
|
21 |
---
|
22 |
|
|
|
52 |
|
53 |
## Training and evaluation data
|
54 |
|
55 |
+
- Training Dataset: 10123
|
56 |
| Class | Positive Count of Class|
|
57 |
|:-------------|:--------|
|
58 |
+
| Agriculture | 2235 |
|
59 |
+
| Buildings | 169 |
|
60 |
+
| Coastal Zone | 698|
|
61 |
+
| Cross-Cutting Area | 1853 |
|
62 |
+
| Disaster Risk Management (DRM) | 814 |
|
63 |
+
| Economy-wide | 873 |
|
64 |
+
| Education | 180|
|
65 |
+
| Energy | 2847 |
|
66 |
+
| Environment | 905 |
|
67 |
+
| Health | 662|
|
68 |
+
| Industries | 419 |
|
69 |
+
| LULUCF/Forestry | 1861|
|
70 |
+
| Social Development | 507 |
|
71 |
+
| Tourism | 192 |
|
72 |
+
| Transport | 1173|
|
73 |
+
| Urban | 558 |
|
74 |
+
| Waste | 714|
|
75 |
+
| Water | 1207 |
|
76 |
+
|
77 |
+
- Validation Dataset: 936
|
78 |
| Class | Positive Count of Class|
|
79 |
|:-------------|:--------|
|
80 |
+
| Agriculture | 200 |
|
81 |
+
| Buildings | 18 |
|
82 |
+
| Coastal Zone | 71|
|
83 |
+
| Cross-Cutting Area | 180 |
|
84 |
+
| Disaster Risk Management (DRM) | 85 |
|
85 |
+
| Economy-wide | 85 |
|
86 |
+
| Education | 23|
|
87 |
+
| Energy | 254 |
|
88 |
+
| Environment | 91 |
|
89 |
+
| Health | 68|
|
90 |
+
| Industries | 41 |
|
91 |
+
| LULUCF/Forestry | 193|
|
92 |
+
| Social Development | 56 |
|
93 |
+
| Tourism | 28 |
|
94 |
+
| Transport | 107|
|
95 |
+
| Urban | 51 |
|
96 |
+
| Waste | 59|
|
97 |
+
| Water | 106 |
|
98 |
|
99 |
## Training procedure
|
100 |
|
|
|
124 |
|
125 |
|label | precision |recall |f1-score| support|
|
126 |
|:-------------:|:---------:|:-----:|:------:|:------:|
|
127 |
+
| Agriculture | 0.720 | 0.850|0.780|200|
|
128 |
+
| Buildings | 0.636 |0.777|0.700|18|
|
129 |
+
| Coastal Zone | 0.562|0.760|0.646|71|
|
130 |
+
| Cross-Cutting Area | 0.569 |0.777|0.657|180|
|
131 |
+
| Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85|
|
132 |
+
| Economy-wide | 0.461 |0.635| 0.534|85|
|
133 |
+
| Education | 0.608|0.608|0.608|23|
|
134 |
+
| Energy | 0.816 |0.838|0.827|254|
|
135 |
+
| Environment | 0.561 |0.703|0.624|91|
|
136 |
+
| Health | 0.708|0.750|0.728|68|
|
137 |
+
| Industries | 0.660 |0.902|0.762|41|
|
138 |
+
| LULUCF/Forestry | 0.676|0.844|0.751|193|
|
139 |
+
| Social Development | 0.593 | 0.678|0.633|56|
|
140 |
+
| Tourism | 0.551 |0.571|0.561|28|
|
141 |
+
| Transport | 0.700|0.766|0.732|107|
|
142 |
+
| Urban | 0.414 |0.568|0.479|51|
|
143 |
+
| Waste | 0.658|0.881|0.753|59|
|
144 |
+
| Water | 0.602 |0.773|0.677|106|
|
145 |
|
146 |
### Environmental Impact
|
147 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
148 |
+
- **Carbon Emitted**: 0.02867 kg of CO2
|
149 |
+
- **Hours Used**: 0.706 hours
|
150 |
|
151 |
### Training Hardware
|
152 |
- **On Cloud**: yes
|