Edit model card

Llama-31-8B_task-1_180-samples_config-2

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1, the GaetanMichelet/chat-120_ft_task-1 and the GaetanMichelet/chat-180_ft_task-1 datasets. It achieves the following results on the evaluation set:

  • Loss: 1.2262

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.0099 0.9412 8 1.9311
1.5434 2.0 17 1.5801
1.4423 2.9412 25 1.4170
1.2232 4.0 34 1.2908
1.0943 4.9412 42 1.2430
0.9751 6.0 51 1.2262
0.739 6.9412 59 1.3161
0.4877 8.0 68 1.5278
0.2813 8.9412 76 1.8161
0.1579 10.0 85 2.2197
0.0849 10.9412 93 2.5830
0.0474 12.0 102 2.6015
0.0374 12.9412 110 2.7205

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_180-samples_config-2

Adapter
(452)
this model

Collections including GaetanMichelet/Llama-31-8B_task-1_180-samples_config-2