GaetanMichelet's picture
End of training
937e025 verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-1
  - GaetanMichelet/chat-120_ft_task-1
  - GaetanMichelet/chat-180_ft_task-1
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-1_180-samples_config-3_full
    results: []

Llama-31-8B_task-1_180-samples_config-3_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1, the GaetanMichelet/chat-120_ft_task-1 and the GaetanMichelet/chat-180_ft_task-1 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.8992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
2.4542 1.0 17 2.4259
2.4022 2.0 34 2.3882
2.3317 3.0 51 2.3140
2.2607 4.0 68 2.2050
2.1352 5.0 85 2.0643
1.9456 6.0 102 1.8885
1.7528 7.0 119 1.7025
1.4935 8.0 136 1.4674
1.2733 9.0 153 1.2421
1.1154 10.0 170 1.1134
1.1202 11.0 187 1.0689
0.9449 12.0 204 1.0450
0.9973 13.0 221 1.0253
1.0562 14.0 238 1.0091
0.9947 15.0 255 0.9928
1.0096 16.0 272 0.9804
0.9222 17.0 289 0.9692
0.8838 18.0 306 0.9603
0.8942 19.0 323 0.9511
0.9058 20.0 340 0.9432
0.8837 21.0 357 0.9354
0.795 22.0 374 0.9315
0.8395 23.0 391 0.9243
0.8308 24.0 408 0.9169
0.7863 25.0 425 0.9138
0.7468 26.0 442 0.9068
0.7658 27.0 459 0.9008
0.7128 28.0 476 0.8992
0.6474 29.0 493 0.9064
0.6387 30.0 510 0.9089
0.6846 31.0 527 0.9096
0.6424 32.0 544 0.9173
0.6598 33.0 561 0.9238
0.6634 34.0 578 0.9290
0.5893 35.0 595 0.9400

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1