metadata
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny - FineTuned - Id -
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: id
split: None
args: 'config: id, split: test'
metrics:
- name: Wer
type: wer
value: 59.896729776247845
Whisper Tiny - FineTuned - Id -
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.4286
- Wer: 59.8967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.7163 | 0.0159 | 1 | 1.8245 | 86.1446 |
1.7097 | 0.0317 | 2 | 1.8245 | 86.1446 |
1.7377 | 0.0476 | 3 | 1.8245 | 86.1446 |
1.65 | 0.0635 | 4 | 1.8245 | 86.1446 |
1.9103 | 0.0794 | 5 | 1.7649 | 68.5026 |
1.7345 | 0.0952 | 6 | 1.6261 | 74.1824 |
1.5202 | 0.1111 | 7 | 1.5249 | 59.6386 |
1.5166 | 0.1270 | 8 | 1.4786 | 59.3804 |
1.5636 | 0.1429 | 9 | 1.4523 | 59.5525 |
1.5493 | 0.1587 | 10 | 1.4286 | 59.8967 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3