|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: funnel-transformer-xlarge_ner_conll2003 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9565363315992617 |
|
- name: Recall |
|
type: recall |
|
value: 0.9592729720632783 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9579026972523318 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9914528250457537 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# funnel-transformer-xlarge_ner_conll2003 |
|
|
|
This model is a fine-tuned version of [funnel-transformer/xlarge](https://huggingface.co/funnel-transformer/xlarge) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0436 |
|
- Precision: 0.9565 |
|
- Recall: 0.9593 |
|
- F1: 0.9579 |
|
- Accuracy: 0.9915 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1349 | 1.0 | 878 | 0.0441 | 0.9328 | 0.9438 | 0.9383 | 0.9881 | |
|
| 0.0308 | 2.0 | 1756 | 0.0377 | 0.9457 | 0.9561 | 0.9509 | 0.9901 | |
|
| 0.0144 | 3.0 | 2634 | 0.0432 | 0.9512 | 0.9578 | 0.9545 | 0.9906 | |
|
| 0.007 | 4.0 | 3512 | 0.0419 | 0.9551 | 0.9584 | 0.9567 | 0.9913 | |
|
| 0.0041 | 5.0 | 4390 | 0.0436 | 0.9565 | 0.9593 | 0.9579 | 0.9915 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|