Bart_reddit_tifu / README.md
GlycerinLOL's picture
Model save
5e33f7f verified
metadata
license: apache-2.0
base_model: facebook/bart-large
tags:
  - generated_from_trainer
datasets:
  - reddit_tifu
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: Bart_reddit_tifu
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: reddit_tifu
          type: reddit_tifu
          config: long
          split: train
          args: long
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.2709
          - name: Precision
            type: precision
            value: 0.8768
          - name: Recall
            type: recall
            value: 0.8648
          - name: F1
            type: f1
            value: 0.8705

Bart_reddit_tifu

This model is a fine-tuned version of facebook/bart-large on the reddit_tifu dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5035
  • Rouge1: 0.2709
  • Rouge2: 0.0948
  • Rougel: 0.2244
  • Rougelsum: 0.2244
  • Gen Len: 19.3555
  • Precision: 0.8768
  • Recall: 0.8648
  • F1: 0.8705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
2.6968 1.0 2370 2.5385 0.2634 0.0907 0.218 0.2182 19.4438 0.8766 0.8641 0.8701
2.4746 2.0 4741 2.5077 0.273 0.0941 0.2238 0.2239 19.2572 0.8774 0.8655 0.8712
2.3066 3.0 7111 2.5012 0.2671 0.0936 0.221 0.2211 19.3071 0.8756 0.864 0.8696
2.2041 4.0 9480 2.5035 0.2709 0.0948 0.2244 0.2244 19.3555 0.8768 0.8648 0.8705

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0