GlycerinLOL's picture
Model save
12ab2d3 verified
|
raw
history blame
3.79 kB
metadata
license: apache-2.0
base_model: facebook/bart-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Bart_From_Scratch
    results: []

LLM_Teached_Bart_From_Scratch

This model is a fine-tuned version of facebook/bart-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5434
  • Rouge1: 0.4476
  • Rouge2: 0.2292
  • Rougel: 0.3868
  • Rougelsum: 0.3865
  • Gen Len: 19.9007
  • Precision: 0.9159
  • Recall: 0.8916
  • F1: 0.9034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
1.836 1.0 521 1.5560 0.4155 0.2028 0.3561 0.3559 19.9745 0.9105 0.8843 0.8971
1.5951 2.0 1042 1.5004 0.4333 0.2136 0.3695 0.3694 19.9353 0.9115 0.8886 0.8997
1.469 3.0 1563 1.4691 0.4355 0.2176 0.3729 0.3728 19.9385 0.912 0.8888 0.9001
1.373 4.0 2084 1.4658 0.4311 0.2164 0.3706 0.3704 19.9647 0.9137 0.8877 0.9003
1.2902 5.0 2605 1.4542 0.4368 0.2218 0.3762 0.376 19.9498 0.9136 0.8887 0.9008
1.222 6.0 3126 1.4584 0.4407 0.223 0.3802 0.3798 19.9425 0.914 0.8902 0.9018
1.1655 7.0 3647 1.4709 0.4404 0.2246 0.3806 0.3803 19.9327 0.9145 0.89 0.9019
1.11 8.0 4168 1.4724 0.4435 0.2269 0.383 0.3828 19.9084 0.9153 0.8906 0.9026
1.0629 9.0 4689 1.4853 0.4431 0.2273 0.3832 0.383 19.928 0.9155 0.8908 0.9028
1.023 10.0 5210 1.5033 0.4409 0.2247 0.3819 0.3818 19.944 0.9152 0.8897 0.9021
0.9862 11.0 5731 1.5074 0.4479 0.2278 0.3862 0.386 19.9124 0.9158 0.8916 0.9034
0.957 12.0 6252 1.5184 0.4461 0.2264 0.3846 0.3847 19.9033 0.9159 0.8909 0.903
0.9315 13.0 6773 1.5269 0.4473 0.2284 0.386 0.3858 19.9084 0.9156 0.8912 0.9031
0.9093 14.0 7294 1.5311 0.4453 0.2273 0.3846 0.3843 19.9135 0.9155 0.8909 0.9029
0.8927 15.0 7815 1.5351 0.4457 0.2267 0.3842 0.384 19.9065 0.9156 0.8909 0.9029
0.8773 16.0 8336 1.5434 0.4476 0.2292 0.3868 0.3865 19.9007 0.9159 0.8916 0.9034

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0