LLM_Teached_Pegasus / README.md
GlycerinLOL's picture
Model save
333f300
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Pegasus
    results: []

LLM_Teached_Pegasus

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6606
  • Rouge1: 0.4557
  • Rouge2: 0.2019
  • Rougel: 0.3603
  • Rougelsum: 0.3597
  • Gen Len: 30.8509
  • Precision: 0.9078
  • Recall: 0.9053
  • F1: 0.9064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
2.0887 1.0 625 1.7362 0.4326 0.1871 0.3375 0.3373 31.2482 0.9035 0.9015 0.9023
1.8362 2.0 1250 1.6844 0.4466 0.1942 0.3511 0.3507 30.3036 0.9071 0.9032 0.905
1.7784 3.0 1875 1.6666 0.451 0.1992 0.3554 0.3551 30.7991 0.907 0.9045 0.9056
1.7261 4.0 2500 1.6606 0.4557 0.2019 0.3603 0.3597 30.8509 0.9078 0.9053 0.9064

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0