Wav2Vec2-Large-XLSR-Tamil
When using this model, make sure that your speech input is sampled at 16kHz.
Inference
The model can be used directly as follows:
!pip install datasets
!pip install transformers
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import librosa
from datasets import load_dataset
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil")
model = Wav2Vec2ForCTC.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice.
!pip install datasets
!pip install transformers
!pip install jiwer
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import librosa
from datasets import load_dataset, load_metric
import re
test_dataset = load_dataset("common_voice", "ta", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil")
model = Wav2Vec2ForCTC.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\โ\%\โ\โ\ \โ\โ\(\)]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 57.004356 %
Usage and Evaluation script
The script used for usage and evaluation can be found here
Training
The Common Voice train
, validation
datasets were used for training.
The script used for training can be found here
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.