Gokulapriyan's picture
update model card README.md
76e46ab
|
raw
history blame
3.03 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-main-gpu-20e-final
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9909863945578231

vit-base-patch16-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0285
  • Accuracy: 0.9910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4852 1.0 551 0.4533 0.8042
0.3033 2.0 1102 0.2157 0.9157
0.2339 3.0 1653 0.1212 0.9534
0.1694 4.0 2204 0.1076 0.9603
0.1715 5.0 2755 0.0830 0.9692
0.1339 6.0 3306 0.0674 0.9762
0.1527 7.0 3857 0.0556 0.9791
0.1214 8.0 4408 0.0455 0.9832
0.1062 9.0 4959 0.0466 0.9829
0.0974 10.0 5510 0.0403 0.9849
0.0875 11.0 6061 0.0385 0.9860
0.0992 12.0 6612 0.0376 0.9870
0.065 13.0 7163 0.0392 0.9864
0.0775 14.0 7714 0.0344 0.9890
0.0544 15.0 8265 0.0362 0.9888
0.0584 16.0 8816 0.0422 0.9872
0.0722 17.0 9367 0.0314 0.9900
0.0765 18.0 9918 0.0313 0.9908
0.0696 19.0 10469 0.0297 0.9912
0.0596 20.0 11020 0.0285 0.9910

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2