Gokulapriyan's picture
update model card README.md
ed274b8
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-main-gpu-30e-final
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9940476190476191

vit-base-patch16-224-finetuned-main-gpu-30e-final

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0231
  • Accuracy: 0.9940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5113 1.0 551 0.4745 0.7971
0.3409 2.0 1102 0.2697 0.8961
0.2675 3.0 1653 0.1611 0.9381
0.2092 4.0 2204 0.1176 0.9548
0.2008 5.0 2755 0.0889 0.9656
0.1555 6.0 3306 0.0666 0.9759
0.1614 7.0 3857 0.0576 0.9778
0.1518 8.0 4408 0.0517 0.9814
0.1231 9.0 4959 0.0528 0.9812
0.1076 10.0 5510 0.0426 0.9850
0.0953 11.0 6061 0.0634 0.9795
0.1097 12.0 6612 0.0398 0.9860
0.0763 13.0 7163 0.0348 0.9866
0.0895 14.0 7714 0.0341 0.9884
0.06 15.0 8265 0.0381 0.9883
0.0767 16.0 8816 0.0382 0.9875
0.0868 17.0 9367 0.0309 0.9898
0.091 18.0 9918 0.0339 0.9885
0.0817 19.0 10469 0.0243 0.9913
0.0641 20.0 11020 0.0286 0.9906
0.0703 21.0 11571 0.0314 0.9906
0.0642 22.0 12122 0.0261 0.9913
0.0695 23.0 12673 0.0260 0.9920
0.0664 24.0 13224 0.0241 0.9928
0.0552 25.0 13775 0.0258 0.9928
0.056 26.0 14326 0.0230 0.9939
0.0488 27.0 14877 0.0221 0.9936
0.0389 28.0 15428 0.0225 0.9930
0.0402 29.0 15979 0.0231 0.9940
0.0424 30.0 16530 0.0211 0.9939

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2